Skip ໄປຫາເນື້ອຫາຫຼັກ
ຕົວປະກອບ
Tick mark Image
ປະເມີນ
Tick mark Image

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

factor(2p^{2}-100+7p)
ລົບ 6 ອອກຈາກ -94 ເພື່ອໃຫ້ໄດ້ -100.
2p^{2}+7p-100=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
p=\frac{-7±\sqrt{7^{2}-4\times 2\left(-100\right)}}{2\times 2}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
p=\frac{-7±\sqrt{49-4\times 2\left(-100\right)}}{2\times 2}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 7.
p=\frac{-7±\sqrt{49-8\left(-100\right)}}{2\times 2}
ຄູນ -4 ໃຫ້ກັບ 2.
p=\frac{-7±\sqrt{49+800}}{2\times 2}
ຄູນ -8 ໃຫ້ກັບ -100.
p=\frac{-7±\sqrt{849}}{2\times 2}
ເພີ່ມ 49 ໃສ່ 800.
p=\frac{-7±\sqrt{849}}{4}
ຄູນ 2 ໃຫ້ກັບ 2.
p=\frac{\sqrt{849}-7}{4}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ p=\frac{-7±\sqrt{849}}{4} ເມື່ອ ± ບວກ. ເພີ່ມ -7 ໃສ່ \sqrt{849}.
p=\frac{-\sqrt{849}-7}{4}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ p=\frac{-7±\sqrt{849}}{4} ເມື່ອ ± ເປັນລົບ. ລົບ \sqrt{849} ອອກຈາກ -7.
2p^{2}+7p-100=2\left(p-\frac{\sqrt{849}-7}{4}\right)\left(p-\frac{-\sqrt{849}-7}{4}\right)
ຫານສົມຜົນຕົ້ນສະບັບໂດຍໃຊ້ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). ແທນ \frac{-7+\sqrt{849}}{4} ເປັນ x_{1} ແລະ \frac{-7-\sqrt{849}}{4} ເປັນ x_{2}.
2p^{2}-100+7p
ລົບ 6 ອອກຈາກ -94 ເພື່ອໃຫ້ໄດ້ -100.