ແກ້ສຳລັບ a
a=-1
a = \frac{5}{2} = 2\frac{1}{2} = 2,5
ແບ່ງປັນ
ສໍາເນົາຄລິບ
2a^{2}=3+3a+2
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ 3 ດ້ວຍ 1+a.
2a^{2}=5+3a
ເພີ່ມ 3 ແລະ 2 ເພື່ອໃຫ້ໄດ້ 5.
2a^{2}-5=3a
ລົບ 5 ອອກຈາກທັງສອງຂ້າງ.
2a^{2}-5-3a=0
ລົບ 3a ອອກຈາກທັງສອງຂ້າງ.
2a^{2}-3a-5=0
ຈັດຮຽງພະຫຸນາມຄືນໃໝ່ໃຫ້ເປັນຮູບແບບມາດຕະຖານ. ວາງພົດຕາມລຳດັບຈາກສູງສຸດຫາຕ່ຳສຸດ.
a+b=-3 ab=2\left(-5\right)=-10
ເພື່ອແກ້ສົມຜົນ, ໃຫ້ຫານທາງຊ້າຍໂດຍການຈັດກຸ່ມ, ທຳອິດ, ທາງຊ້າຍຈະຕ້ອງຂຽນໃໝ່ເປັນ 2a^{2}+aa+ba-5. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
1,-10 2,-5
ເນື່ອງຈາກ ab ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງມີສັນຍາລັກກົງກັນຂ້າມ. ເນື່ອງຈາກ a+b ເປັນຄ່າລົບ, ຈຳນວນລົບມີຄ່າສົມບູນສູງກວ່າຈຳນວນບວກ. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ -10.
1-10=-9 2-5=-3
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-5 b=2
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ -3.
\left(2a^{2}-5a\right)+\left(2a-5\right)
ຂຽນ 2a^{2}-3a-5 ຄືນໃໝ່ເປັນ \left(2a^{2}-5a\right)+\left(2a-5\right).
a\left(2a-5\right)+2a-5
ແຍກ a ອອກໃນ 2a^{2}-5a.
\left(2a-5\right)\left(a+1\right)
ແຍກຄຳທົ່ວໄປ 2a-5 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
a=\frac{5}{2} a=-1
ເພື່ອຊອກຫາວິທີແກ້ສົມຜົນ, ໃຫ້ແກ້ 2a-5=0 ແລະ a+1=0.
2a^{2}=3+3a+2
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ 3 ດ້ວຍ 1+a.
2a^{2}=5+3a
ເພີ່ມ 3 ແລະ 2 ເພື່ອໃຫ້ໄດ້ 5.
2a^{2}-5=3a
ລົບ 5 ອອກຈາກທັງສອງຂ້າງ.
2a^{2}-5-3a=0
ລົບ 3a ອອກຈາກທັງສອງຂ້າງ.
2a^{2}-3a-5=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
a=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2\left(-5\right)}}{2\times 2}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 2 ສຳລັບ a, -3 ສຳລັບ b ແລະ -5 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-3\right)±\sqrt{9-4\times 2\left(-5\right)}}{2\times 2}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -3.
a=\frac{-\left(-3\right)±\sqrt{9-8\left(-5\right)}}{2\times 2}
ຄູນ -4 ໃຫ້ກັບ 2.
a=\frac{-\left(-3\right)±\sqrt{9+40}}{2\times 2}
ຄູນ -8 ໃຫ້ກັບ -5.
a=\frac{-\left(-3\right)±\sqrt{49}}{2\times 2}
ເພີ່ມ 9 ໃສ່ 40.
a=\frac{-\left(-3\right)±7}{2\times 2}
ເອົາຮາກຂັ້ນສອງຂອງ 49.
a=\frac{3±7}{2\times 2}
ຈຳນວນກົງກັນຂ້າມຂອງ -3 ແມ່ນ 3.
a=\frac{3±7}{4}
ຄູນ 2 ໃຫ້ກັບ 2.
a=\frac{10}{4}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ a=\frac{3±7}{4} ເມື່ອ ± ບວກ. ເພີ່ມ 3 ໃສ່ 7.
a=\frac{5}{2}
ຫຼຸດເສດສ່ວນ \frac{10}{4} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 2.
a=-\frac{4}{4}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ a=\frac{3±7}{4} ເມື່ອ ± ເປັນລົບ. ລົບ 7 ອອກຈາກ 3.
a=-1
ຫານ -4 ດ້ວຍ 4.
a=\frac{5}{2} a=-1
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
2a^{2}=3+3a+2
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ 3 ດ້ວຍ 1+a.
2a^{2}=5+3a
ເພີ່ມ 3 ແລະ 2 ເພື່ອໃຫ້ໄດ້ 5.
2a^{2}-3a=5
ລົບ 3a ອອກຈາກທັງສອງຂ້າງ.
\frac{2a^{2}-3a}{2}=\frac{5}{2}
ຫານທັງສອງຂ້າງດ້ວຍ 2.
a^{2}-\frac{3}{2}a=\frac{5}{2}
ການຫານດ້ວຍ 2 ຈະຍົກເລີກການຄູນດ້ວຍ 2.
a^{2}-\frac{3}{2}a+\left(-\frac{3}{4}\right)^{2}=\frac{5}{2}+\left(-\frac{3}{4}\right)^{2}
ຫານ -\frac{3}{2}, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ -\frac{3}{4}. ຈາກນັ້ນເພີ່ມຮາກຂອງ -\frac{3}{4} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
a^{2}-\frac{3}{2}a+\frac{9}{16}=\frac{5}{2}+\frac{9}{16}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ -\frac{3}{4} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
a^{2}-\frac{3}{2}a+\frac{9}{16}=\frac{49}{16}
ເພີ່ມ \frac{5}{2} ໃສ່ \frac{9}{16} ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
\left(a-\frac{3}{4}\right)^{2}=\frac{49}{16}
ຕົວປະກອບ a^{2}-\frac{3}{2}a+\frac{9}{16}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(a-\frac{3}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
a-\frac{3}{4}=\frac{7}{4} a-\frac{3}{4}=-\frac{7}{4}
ເຮັດໃຫ້ງ່າຍ.
a=\frac{5}{2} a=-1
ເພີ່ມ \frac{3}{4} ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}