ແກ້ສຳລັບ a
a = \frac{\sqrt{19} - 1}{2} \approx 1,679449472
a=\frac{-\sqrt{19}-1}{2}\approx -2,679449472
ແບ່ງປັນ
ສໍາເນົາຄລິບ
2a^{2}+2a-9=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
a=\frac{-2±\sqrt{2^{2}-4\times 2\left(-9\right)}}{2\times 2}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 2 ສຳລັບ a, 2 ສຳລັບ b ແລະ -9 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-2±\sqrt{4-4\times 2\left(-9\right)}}{2\times 2}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 2.
a=\frac{-2±\sqrt{4-8\left(-9\right)}}{2\times 2}
ຄູນ -4 ໃຫ້ກັບ 2.
a=\frac{-2±\sqrt{4+72}}{2\times 2}
ຄູນ -8 ໃຫ້ກັບ -9.
a=\frac{-2±\sqrt{76}}{2\times 2}
ເພີ່ມ 4 ໃສ່ 72.
a=\frac{-2±2\sqrt{19}}{2\times 2}
ເອົາຮາກຂັ້ນສອງຂອງ 76.
a=\frac{-2±2\sqrt{19}}{4}
ຄູນ 2 ໃຫ້ກັບ 2.
a=\frac{2\sqrt{19}-2}{4}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ a=\frac{-2±2\sqrt{19}}{4} ເມື່ອ ± ບວກ. ເພີ່ມ -2 ໃສ່ 2\sqrt{19}.
a=\frac{\sqrt{19}-1}{2}
ຫານ -2+2\sqrt{19} ດ້ວຍ 4.
a=\frac{-2\sqrt{19}-2}{4}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ a=\frac{-2±2\sqrt{19}}{4} ເມື່ອ ± ເປັນລົບ. ລົບ 2\sqrt{19} ອອກຈາກ -2.
a=\frac{-\sqrt{19}-1}{2}
ຫານ -2-2\sqrt{19} ດ້ວຍ 4.
a=\frac{\sqrt{19}-1}{2} a=\frac{-\sqrt{19}-1}{2}
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
2a^{2}+2a-9=0
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
2a^{2}+2a-9-\left(-9\right)=-\left(-9\right)
ເພີ່ມ 9 ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
2a^{2}+2a=-\left(-9\right)
ການລົບ -9 ອອກຈາກຕົວມັນເອງຈະເຫຼືອ 0.
2a^{2}+2a=9
ລົບ -9 ອອກຈາກ 0.
\frac{2a^{2}+2a}{2}=\frac{9}{2}
ຫານທັງສອງຂ້າງດ້ວຍ 2.
a^{2}+\frac{2}{2}a=\frac{9}{2}
ການຫານດ້ວຍ 2 ຈະຍົກເລີກການຄູນດ້ວຍ 2.
a^{2}+a=\frac{9}{2}
ຫານ 2 ດ້ວຍ 2.
a^{2}+a+\left(\frac{1}{2}\right)^{2}=\frac{9}{2}+\left(\frac{1}{2}\right)^{2}
ຫານ 1, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ \frac{1}{2}. ຈາກນັ້ນເພີ່ມຮາກຂອງ \frac{1}{2} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
a^{2}+a+\frac{1}{4}=\frac{9}{2}+\frac{1}{4}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ \frac{1}{2} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
a^{2}+a+\frac{1}{4}=\frac{19}{4}
ເພີ່ມ \frac{9}{2} ໃສ່ \frac{1}{4} ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
\left(a+\frac{1}{2}\right)^{2}=\frac{19}{4}
ຕົວປະກອບ a^{2}+a+\frac{1}{4}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(a+\frac{1}{2}\right)^{2}}=\sqrt{\frac{19}{4}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
a+\frac{1}{2}=\frac{\sqrt{19}}{2} a+\frac{1}{2}=-\frac{\sqrt{19}}{2}
ເຮັດໃຫ້ງ່າຍ.
a=\frac{\sqrt{19}-1}{2} a=\frac{-\sqrt{19}-1}{2}
ລົບ \frac{1}{2} ອອກຈາກສົມຜົນທັງສອງຂ້າງ.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}