ແກ້ສຳລັບ x
x = \frac{\sqrt{3001} + 55}{4} \approx 27,445345925
x=\frac{55-\sqrt{3001}}{4}\approx 0,054654075
Graph
ແບ່ງປັນ
ສໍາເນົາຄລິບ
2x^{2}-55x+3=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-\left(-55\right)±\sqrt{\left(-55\right)^{2}-4\times 2\times 3}}{2\times 2}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 2 ສຳລັບ a, -55 ສຳລັບ b ແລະ 3 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-55\right)±\sqrt{3025-4\times 2\times 3}}{2\times 2}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -55.
x=\frac{-\left(-55\right)±\sqrt{3025-8\times 3}}{2\times 2}
ຄູນ -4 ໃຫ້ກັບ 2.
x=\frac{-\left(-55\right)±\sqrt{3025-24}}{2\times 2}
ຄູນ -8 ໃຫ້ກັບ 3.
x=\frac{-\left(-55\right)±\sqrt{3001}}{2\times 2}
ເພີ່ມ 3025 ໃສ່ -24.
x=\frac{55±\sqrt{3001}}{2\times 2}
ຈຳນວນກົງກັນຂ້າມຂອງ -55 ແມ່ນ 55.
x=\frac{55±\sqrt{3001}}{4}
ຄູນ 2 ໃຫ້ກັບ 2.
x=\frac{\sqrt{3001}+55}{4}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{55±\sqrt{3001}}{4} ເມື່ອ ± ບວກ. ເພີ່ມ 55 ໃສ່ \sqrt{3001}.
x=\frac{55-\sqrt{3001}}{4}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{55±\sqrt{3001}}{4} ເມື່ອ ± ເປັນລົບ. ລົບ \sqrt{3001} ອອກຈາກ 55.
x=\frac{\sqrt{3001}+55}{4} x=\frac{55-\sqrt{3001}}{4}
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
2x^{2}-55x+3=0
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
2x^{2}-55x+3-3=-3
ລົບ 3 ອອກຈາກສົມຜົນທັງສອງຂ້າງ.
2x^{2}-55x=-3
ການລົບ 3 ອອກຈາກຕົວມັນເອງຈະເຫຼືອ 0.
\frac{2x^{2}-55x}{2}=-\frac{3}{2}
ຫານທັງສອງຂ້າງດ້ວຍ 2.
x^{2}-\frac{55}{2}x=-\frac{3}{2}
ການຫານດ້ວຍ 2 ຈະຍົກເລີກການຄູນດ້ວຍ 2.
x^{2}-\frac{55}{2}x+\left(-\frac{55}{4}\right)^{2}=-\frac{3}{2}+\left(-\frac{55}{4}\right)^{2}
ຫານ -\frac{55}{2}, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ -\frac{55}{4}. ຈາກນັ້ນເພີ່ມຮາກຂອງ -\frac{55}{4} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}-\frac{55}{2}x+\frac{3025}{16}=-\frac{3}{2}+\frac{3025}{16}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ -\frac{55}{4} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}-\frac{55}{2}x+\frac{3025}{16}=\frac{3001}{16}
ເພີ່ມ -\frac{3}{2} ໃສ່ \frac{3025}{16} ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
\left(x-\frac{55}{4}\right)^{2}=\frac{3001}{16}
ຕົວປະກອບ x^{2}-\frac{55}{2}x+\frac{3025}{16}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x-\frac{55}{4}\right)^{2}}=\sqrt{\frac{3001}{16}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x-\frac{55}{4}=\frac{\sqrt{3001}}{4} x-\frac{55}{4}=-\frac{\sqrt{3001}}{4}
ເຮັດໃຫ້ງ່າຍ.
x=\frac{\sqrt{3001}+55}{4} x=\frac{55-\sqrt{3001}}{4}
ເພີ່ມ \frac{55}{4} ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}