Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

2x^{2}+x-5=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-1±\sqrt{1^{2}-4\times 2\left(-5\right)}}{2\times 2}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 2 ສຳລັບ a, 1 ສຳລັບ b ແລະ -5 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times 2\left(-5\right)}}{2\times 2}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 1.
x=\frac{-1±\sqrt{1-8\left(-5\right)}}{2\times 2}
ຄູນ -4 ໃຫ້ກັບ 2.
x=\frac{-1±\sqrt{1+40}}{2\times 2}
ຄູນ -8 ໃຫ້ກັບ -5.
x=\frac{-1±\sqrt{41}}{2\times 2}
ເພີ່ມ 1 ໃສ່ 40.
x=\frac{-1±\sqrt{41}}{4}
ຄູນ 2 ໃຫ້ກັບ 2.
x=\frac{\sqrt{41}-1}{4}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-1±\sqrt{41}}{4} ເມື່ອ ± ບວກ. ເພີ່ມ -1 ໃສ່ \sqrt{41}.
x=\frac{-\sqrt{41}-1}{4}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-1±\sqrt{41}}{4} ເມື່ອ ± ເປັນລົບ. ລົບ \sqrt{41} ອອກຈາກ -1.
x=\frac{\sqrt{41}-1}{4} x=\frac{-\sqrt{41}-1}{4}
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
2x^{2}+x-5=0
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
2x^{2}+x-5-\left(-5\right)=-\left(-5\right)
ເພີ່ມ 5 ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
2x^{2}+x=-\left(-5\right)
ການລົບ -5 ອອກຈາກຕົວມັນເອງຈະເຫຼືອ 0.
2x^{2}+x=5
ລົບ -5 ອອກຈາກ 0.
\frac{2x^{2}+x}{2}=\frac{5}{2}
ຫານທັງສອງຂ້າງດ້ວຍ 2.
x^{2}+\frac{1}{2}x=\frac{5}{2}
ການຫານດ້ວຍ 2 ຈະຍົກເລີກການຄູນດ້ວຍ 2.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=\frac{5}{2}+\left(\frac{1}{4}\right)^{2}
ຫານ \frac{1}{2}, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ \frac{1}{4}. ຈາກນັ້ນເພີ່ມຮາກຂອງ \frac{1}{4} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{5}{2}+\frac{1}{16}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ \frac{1}{4} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{41}{16}
ເພີ່ມ \frac{5}{2} ໃສ່ \frac{1}{16} ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
\left(x+\frac{1}{4}\right)^{2}=\frac{41}{16}
ຕົວປະກອບ x^{2}+\frac{1}{2}x+\frac{1}{16}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{41}{16}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x+\frac{1}{4}=\frac{\sqrt{41}}{4} x+\frac{1}{4}=-\frac{\sqrt{41}}{4}
ເຮັດໃຫ້ງ່າຍ.
x=\frac{\sqrt{41}-1}{4} x=\frac{-\sqrt{41}-1}{4}
ລົບ \frac{1}{4} ອອກຈາກສົມຜົນທັງສອງຂ້າງ.