Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

a+b=5 ab=2\left(-168\right)=-336
ເພື່ອແກ້ສົມຜົນ, ໃຫ້ຫານທາງຊ້າຍໂດຍການຈັດກຸ່ມ, ທຳອິດ, ທາງຊ້າຍຈະຕ້ອງຂຽນໃໝ່ເປັນ 2x^{2}+ax+bx-168. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
-1,336 -2,168 -3,112 -4,84 -6,56 -7,48 -8,42 -12,28 -14,24 -16,21
ເນື່ອງຈາກ ab ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງມີສັນຍາລັກກົງກັນຂ້າມ. ເນື່ອງຈາກ a+b ເປັນຄ່າບວກ, ຈຳນວນບວກຈຶ່ງມີຄ່າສົມບູນສູງກວ່າຈຳນວນລົບ. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ -336.
-1+336=335 -2+168=166 -3+112=109 -4+84=80 -6+56=50 -7+48=41 -8+42=34 -12+28=16 -14+24=10 -16+21=5
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-16 b=21
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ 5.
\left(2x^{2}-16x\right)+\left(21x-168\right)
ຂຽນ 2x^{2}+5x-168 ຄືນໃໝ່ເປັນ \left(2x^{2}-16x\right)+\left(21x-168\right).
2x\left(x-8\right)+21\left(x-8\right)
ຕົວຫານ 2x ໃນຕອນທຳອິດ ແລະ 21 ໃນກຸ່ມທີສອງ.
\left(x-8\right)\left(2x+21\right)
ແຍກຄຳທົ່ວໄປ x-8 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
x=8 x=-\frac{21}{2}
ເພື່ອຊອກຫາວິທີແກ້ສົມຜົນ, ໃຫ້ແກ້ x-8=0 ແລະ 2x+21=0.
2x^{2}+5x-168=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-5±\sqrt{5^{2}-4\times 2\left(-168\right)}}{2\times 2}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 2 ສຳລັບ a, 5 ສຳລັບ b ແລະ -168 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 2\left(-168\right)}}{2\times 2}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 5.
x=\frac{-5±\sqrt{25-8\left(-168\right)}}{2\times 2}
ຄູນ -4 ໃຫ້ກັບ 2.
x=\frac{-5±\sqrt{25+1344}}{2\times 2}
ຄູນ -8 ໃຫ້ກັບ -168.
x=\frac{-5±\sqrt{1369}}{2\times 2}
ເພີ່ມ 25 ໃສ່ 1344.
x=\frac{-5±37}{2\times 2}
ເອົາຮາກຂັ້ນສອງຂອງ 1369.
x=\frac{-5±37}{4}
ຄູນ 2 ໃຫ້ກັບ 2.
x=\frac{32}{4}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-5±37}{4} ເມື່ອ ± ບວກ. ເພີ່ມ -5 ໃສ່ 37.
x=8
ຫານ 32 ດ້ວຍ 4.
x=-\frac{42}{4}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-5±37}{4} ເມື່ອ ± ເປັນລົບ. ລົບ 37 ອອກຈາກ -5.
x=-\frac{21}{2}
ຫຼຸດເສດສ່ວນ \frac{-42}{4} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 2.
x=8 x=-\frac{21}{2}
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
2x^{2}+5x-168=0
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
2x^{2}+5x-168-\left(-168\right)=-\left(-168\right)
ເພີ່ມ 168 ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
2x^{2}+5x=-\left(-168\right)
ການລົບ -168 ອອກຈາກຕົວມັນເອງຈະເຫຼືອ 0.
2x^{2}+5x=168
ລົບ -168 ອອກຈາກ 0.
\frac{2x^{2}+5x}{2}=\frac{168}{2}
ຫານທັງສອງຂ້າງດ້ວຍ 2.
x^{2}+\frac{5}{2}x=\frac{168}{2}
ການຫານດ້ວຍ 2 ຈະຍົກເລີກການຄູນດ້ວຍ 2.
x^{2}+\frac{5}{2}x=84
ຫານ 168 ດ້ວຍ 2.
x^{2}+\frac{5}{2}x+\left(\frac{5}{4}\right)^{2}=84+\left(\frac{5}{4}\right)^{2}
ຫານ \frac{5}{2}, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ \frac{5}{4}. ຈາກນັ້ນເພີ່ມຮາກຂອງ \frac{5}{4} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}+\frac{5}{2}x+\frac{25}{16}=84+\frac{25}{16}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ \frac{5}{4} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}+\frac{5}{2}x+\frac{25}{16}=\frac{1369}{16}
ເພີ່ມ 84 ໃສ່ \frac{25}{16}.
\left(x+\frac{5}{4}\right)^{2}=\frac{1369}{16}
ຕົວປະກອບ x^{2}+\frac{5}{2}x+\frac{25}{16}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x+\frac{5}{4}\right)^{2}}=\sqrt{\frac{1369}{16}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x+\frac{5}{4}=\frac{37}{4} x+\frac{5}{4}=-\frac{37}{4}
ເຮັດໃຫ້ງ່າຍ.
x=8 x=-\frac{21}{2}
ລົບ \frac{5}{4} ອອກຈາກສົມຜົນທັງສອງຂ້າງ.