ແກ້ສຳລັບ x
x = \frac{\sqrt{390}}{15} \approx 1,316561177
x = -\frac{\sqrt{390}}{15} \approx -1,316561177
Graph
ແບ່ງປັນ
ສໍາເນົາຄລິບ
15x^{2}-24=2
ສະຫຼັບຂ້າງເພື່ອໃຫ້ພົດຕົວແປທັງໝົດຢູ່ຂ້າງຊ້າຍຂອງເຄື່ອງໝາຍເທົ່າກັບ.
15x^{2}=2+24
ເພີ່ມ 24 ໃສ່ທັງສອງດ້ານ.
15x^{2}=26
ເພີ່ມ 2 ແລະ 24 ເພື່ອໃຫ້ໄດ້ 26.
x^{2}=\frac{26}{15}
ຫານທັງສອງຂ້າງດ້ວຍ 15.
x=\frac{\sqrt{390}}{15} x=-\frac{\sqrt{390}}{15}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
15x^{2}-24=2
ສະຫຼັບຂ້າງເພື່ອໃຫ້ພົດຕົວແປທັງໝົດຢູ່ຂ້າງຊ້າຍຂອງເຄື່ອງໝາຍເທົ່າກັບ.
15x^{2}-24-2=0
ລົບ 2 ອອກຈາກທັງສອງຂ້າງ.
15x^{2}-26=0
ລົບ 2 ອອກຈາກ -24 ເພື່ອໃຫ້ໄດ້ -26.
x=\frac{0±\sqrt{0^{2}-4\times 15\left(-26\right)}}{2\times 15}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 15 ສຳລັບ a, 0 ສຳລັບ b ແລະ -26 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 15\left(-26\right)}}{2\times 15}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 0.
x=\frac{0±\sqrt{-60\left(-26\right)}}{2\times 15}
ຄູນ -4 ໃຫ້ກັບ 15.
x=\frac{0±\sqrt{1560}}{2\times 15}
ຄູນ -60 ໃຫ້ກັບ -26.
x=\frac{0±2\sqrt{390}}{2\times 15}
ເອົາຮາກຂັ້ນສອງຂອງ 1560.
x=\frac{0±2\sqrt{390}}{30}
ຄູນ 2 ໃຫ້ກັບ 15.
x=\frac{\sqrt{390}}{15}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{0±2\sqrt{390}}{30} ເມື່ອ ± ບວກ.
x=-\frac{\sqrt{390}}{15}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{0±2\sqrt{390}}{30} ເມື່ອ ± ເປັນລົບ.
x=\frac{\sqrt{390}}{15} x=-\frac{\sqrt{390}}{15}
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}