Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

x\left(18x-24\right)=0
ຕົວປະກອບຈາກ x.
x=0 x=\frac{4}{3}
ເພື່ອຊອກຫາວິທີແກ້ສົມຜົນ, ໃຫ້ແກ້ x=0 ແລະ 18x-24=0.
18x^{2}-24x=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}}}{2\times 18}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 18 ສຳລັບ a, -24 ສຳລັບ b ແລະ 0 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-24\right)±24}{2\times 18}
ເອົາຮາກຂັ້ນສອງຂອງ \left(-24\right)^{2}.
x=\frac{24±24}{2\times 18}
ຈຳນວນກົງກັນຂ້າມຂອງ -24 ແມ່ນ 24.
x=\frac{24±24}{36}
ຄູນ 2 ໃຫ້ກັບ 18.
x=\frac{48}{36}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{24±24}{36} ເມື່ອ ± ບວກ. ເພີ່ມ 24 ໃສ່ 24.
x=\frac{4}{3}
ຫຼຸດເສດສ່ວນ \frac{48}{36} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 12.
x=\frac{0}{36}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{24±24}{36} ເມື່ອ ± ເປັນລົບ. ລົບ 24 ອອກຈາກ 24.
x=0
ຫານ 0 ດ້ວຍ 36.
x=\frac{4}{3} x=0
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
18x^{2}-24x=0
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
\frac{18x^{2}-24x}{18}=\frac{0}{18}
ຫານທັງສອງຂ້າງດ້ວຍ 18.
x^{2}+\left(-\frac{24}{18}\right)x=\frac{0}{18}
ການຫານດ້ວຍ 18 ຈະຍົກເລີກການຄູນດ້ວຍ 18.
x^{2}-\frac{4}{3}x=\frac{0}{18}
ຫຼຸດເສດສ່ວນ \frac{-24}{18} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 6.
x^{2}-\frac{4}{3}x=0
ຫານ 0 ດ້ວຍ 18.
x^{2}-\frac{4}{3}x+\left(-\frac{2}{3}\right)^{2}=\left(-\frac{2}{3}\right)^{2}
ຫານ -\frac{4}{3}, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ -\frac{2}{3}. ຈາກນັ້ນເພີ່ມຮາກຂອງ -\frac{2}{3} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{4}{9}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ -\frac{2}{3} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
\left(x-\frac{2}{3}\right)^{2}=\frac{4}{9}
ຕົວປະກອບ x^{2}-\frac{4}{3}x+\frac{4}{9}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x-\frac{2}{3}\right)^{2}}=\sqrt{\frac{4}{9}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x-\frac{2}{3}=\frac{2}{3} x-\frac{2}{3}=-\frac{2}{3}
ເຮັດໃຫ້ງ່າຍ.
x=\frac{4}{3} x=0
ເພີ່ມ \frac{2}{3} ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.