Skip ໄປຫາເນື້ອຫາຫຼັກ
ຕົວປະກອບ
Tick mark Image
ປະເມີນ
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

a+b=8 ab=16\times 1=16
ຕົວຫານນິພົດຕາມການຈັດກຸ່ມ. ທຳອິດນິພົດຕ້ອງຖືກຂຽນຄືນໃໝ່ເປັນ 16x^{2}+ax+bx+1. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
1,16 2,8 4,4
ເນື່ອງຈາກ ab ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງມີສັນຍາລັກດຽວກັນ. ເນື່ອງຈາກ a+b ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງເປັນຄ່າບວກທັງຄູ່. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ 16.
1+16=17 2+8=10 4+4=8
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=4 b=4
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ 8.
\left(16x^{2}+4x\right)+\left(4x+1\right)
ຂຽນ 16x^{2}+8x+1 ຄືນໃໝ່ເປັນ \left(16x^{2}+4x\right)+\left(4x+1\right).
4x\left(4x+1\right)+4x+1
ແຍກ 4x ອອກໃນ 16x^{2}+4x.
\left(4x+1\right)\left(4x+1\right)
ແຍກຄຳທົ່ວໄປ 4x+1 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
\left(4x+1\right)^{2}
ຂຽນຄືນໃໝ່ເປັນຮາກທະວິນາມ.
factor(16x^{2}+8x+1)
ຕຣີນາມນີ້ມີຮູບແບບຂອງຕຣີນາມແບບກຳລັງສອງ, ບາງຄັ້ງຄູນດ້ວຍຕົວປະກອບທົ່ວໄປ. ຕຣີນາມກຳລັງສອງສາມາດຖືກໃຊ້ເປັນຕົວປະກອບໄດ້ໂດຍການຊອກຫາຮາກຂັ້ນສອງຂອງພົດນຳໜ້າ ແລະ ຕາມຫຼັງໄດ້.
gcf(16,8,1)=1
ຊອກຫາຕົວປະກອບທົ່ວໄປທີ່ຫຼາຍທີ່ສຸດຂອງຄ່າສຳປະສິດ.
\sqrt{16x^{2}}=4x
ຊອກຫາຈຳນວນຮາກຂັ້ນສອງຂອງພົດນຳ, 16x^{2}.
\left(4x+1\right)^{2}
ກຳລັງສອງແບບຕຣີນາມແມ່ນກຳລັງສອງຂອງທະວິນາມທີ່ຜົນຮວມ ຫຼື ຄວາມແຕກຕ່າງຂອງຮາກກຳລັງສອງຂອງພົດນຳໜ້າ ຫຼື ຕາມຫຼັງ, ດ້ວຍເຄື່ອງໝາຍທີ່ລະບຸຕາມເຄື່ອງໝາຍຂອງພົດທາງກາງຂອງກຳລັງສອງແບບຕຣີນາມ.
16x^{2}+8x+1=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
x=\frac{-8±\sqrt{8^{2}-4\times 16}}{2\times 16}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-8±\sqrt{64-4\times 16}}{2\times 16}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 8.
x=\frac{-8±\sqrt{64-64}}{2\times 16}
ຄູນ -4 ໃຫ້ກັບ 16.
x=\frac{-8±\sqrt{0}}{2\times 16}
ເພີ່ມ 64 ໃສ່ -64.
x=\frac{-8±0}{2\times 16}
ເອົາຮາກຂັ້ນສອງຂອງ 0.
x=\frac{-8±0}{32}
ຄູນ 2 ໃຫ້ກັບ 16.
16x^{2}+8x+1=16\left(x-\left(-\frac{1}{4}\right)\right)\left(x-\left(-\frac{1}{4}\right)\right)
ຫານສົມຜົນຕົ້ນສະບັບໂດຍໃຊ້ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). ແທນ -\frac{1}{4} ເປັນ x_{1} ແລະ -\frac{1}{4} ເປັນ x_{2}.
16x^{2}+8x+1=16\left(x+\frac{1}{4}\right)\left(x+\frac{1}{4}\right)
ເຮັດໃຫ້ນິພົດທັງໝົດຂອງຮູບແບບ p-\left(-q\right) ເປັນ p+q.
16x^{2}+8x+1=16\times \frac{4x+1}{4}\left(x+\frac{1}{4}\right)
ເພີ່ມ \frac{1}{4} ໃສ່ x ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
16x^{2}+8x+1=16\times \frac{4x+1}{4}\times \frac{4x+1}{4}
ເພີ່ມ \frac{1}{4} ໃສ່ x ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
16x^{2}+8x+1=16\times \frac{\left(4x+1\right)\left(4x+1\right)}{4\times 4}
ຄູນ \frac{4x+1}{4} ກັບ \frac{4x+1}{4} ໂດຍການຄູນຕົວເສດຄູນຕົວເສດ ແລະ ຕົວຫານຄູນຫານ. ຈາກນັ້ນຫຼຸດເສດສ່ວນເປັນພົດທີ່ໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
16x^{2}+8x+1=16\times \frac{\left(4x+1\right)\left(4x+1\right)}{16}
ຄູນ 4 ໃຫ້ກັບ 4.
16x^{2}+8x+1=\left(4x+1\right)\left(4x+1\right)
ຍົກເລີກຕົວຄູນທີ່ໃຫຍ່ທີ່ສຸດ 16 ໃນ 16 ແລະ 16.