ຕົວປະກອບ
2\left(8p^{2}+4p+3\right)
ປະເມີນ
16p^{2}+8p+6
ແບ່ງປັນ
ສໍາເນົາຄລິບ
2\left(8p^{2}+4p+3\right)
ຕົວປະກອບຈາກ 2. ພະຫຸນາມ 8p^{2}+4p+3 ບໍ່ແມ່ນປັດໃຈເນື່ອງຈາກມັນເປັນໂດຍບໍ່ມີຮາກເຫດຜົນໃດໆ.
16p^{2}+8p+6=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
p=\frac{-8±\sqrt{8^{2}-4\times 16\times 6}}{2\times 16}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
p=\frac{-8±\sqrt{64-4\times 16\times 6}}{2\times 16}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 8.
p=\frac{-8±\sqrt{64-64\times 6}}{2\times 16}
ຄູນ -4 ໃຫ້ກັບ 16.
p=\frac{-8±\sqrt{64-384}}{2\times 16}
ຄູນ -64 ໃຫ້ກັບ 6.
p=\frac{-8±\sqrt{-320}}{2\times 16}
ເພີ່ມ 64 ໃສ່ -384.
16p^{2}+8p+6
ເນື່ອງຈາກຮາກຂອງຈຳນວນລົບບໍ່ໄດ້ຖືກລະບຸໄວ້ໃນຊ່ອງຂໍ້ມູນຈິງ, ຈຶ່ງບໍ່ມີຄຳຕອບ. ບໍ່ສາມາດຫານສົມຜົນສອງຊັ້ນແບບພະຫຸນາມໄດ້.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}