ແກ້ສຳລັບ x
x=\frac{1}{4}=0,25
Graph
ແບ່ງປັນ
ສໍາເນົາຄລິບ
16x^{2}-8x+1=0
ເພີ່ມ 1 ໃສ່ທັງສອງດ້ານ.
a+b=-8 ab=16\times 1=16
ເພື່ອແກ້ສົມຜົນ, ໃຫ້ຫານທາງຊ້າຍໂດຍການຈັດກຸ່ມ, ທຳອິດ, ທາງຊ້າຍຈະຕ້ອງຂຽນໃໝ່ເປັນ 16x^{2}+ax+bx+1. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
-1,-16 -2,-8 -4,-4
ເນື່ອງຈາກ ab ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງມີສັນຍາລັກດຽວກັນ. ເນື່ອງຈາກ a+b ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງເປັນຄ່າລົບທັງຄູ່. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ 16.
-1-16=-17 -2-8=-10 -4-4=-8
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-4 b=-4
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ -8.
\left(16x^{2}-4x\right)+\left(-4x+1\right)
ຂຽນ 16x^{2}-8x+1 ຄືນໃໝ່ເປັນ \left(16x^{2}-4x\right)+\left(-4x+1\right).
4x\left(4x-1\right)-\left(4x-1\right)
ຕົວຫານ 4x ໃນຕອນທຳອິດ ແລະ -1 ໃນກຸ່ມທີສອງ.
\left(4x-1\right)\left(4x-1\right)
ແຍກຄຳທົ່ວໄປ 4x-1 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
\left(4x-1\right)^{2}
ຂຽນຄືນໃໝ່ເປັນຮາກທະວິນາມ.
x=\frac{1}{4}
ເພື່ອຊອກຫາສົມຜົນ, ໃຫ້ແກ້ໄຂ 4x-1=0.
16x^{2}-8x=-1
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
16x^{2}-8x-\left(-1\right)=-1-\left(-1\right)
ເພີ່ມ 1 ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
16x^{2}-8x-\left(-1\right)=0
ການລົບ -1 ອອກຈາກຕົວມັນເອງຈະເຫຼືອ 0.
16x^{2}-8x+1=0
ລົບ -1 ອອກຈາກ 0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 16}}{2\times 16}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 16 ສຳລັບ a, -8 ສຳລັບ b ແລະ 1 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 16}}{2\times 16}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -8.
x=\frac{-\left(-8\right)±\sqrt{64-64}}{2\times 16}
ຄູນ -4 ໃຫ້ກັບ 16.
x=\frac{-\left(-8\right)±\sqrt{0}}{2\times 16}
ເພີ່ມ 64 ໃສ່ -64.
x=-\frac{-8}{2\times 16}
ເອົາຮາກຂັ້ນສອງຂອງ 0.
x=\frac{8}{2\times 16}
ຈຳນວນກົງກັນຂ້າມຂອງ -8 ແມ່ນ 8.
x=\frac{8}{32}
ຄູນ 2 ໃຫ້ກັບ 16.
x=\frac{1}{4}
ຫຼຸດເສດສ່ວນ \frac{8}{32} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 8.
16x^{2}-8x=-1
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
\frac{16x^{2}-8x}{16}=-\frac{1}{16}
ຫານທັງສອງຂ້າງດ້ວຍ 16.
x^{2}+\left(-\frac{8}{16}\right)x=-\frac{1}{16}
ການຫານດ້ວຍ 16 ຈະຍົກເລີກການຄູນດ້ວຍ 16.
x^{2}-\frac{1}{2}x=-\frac{1}{16}
ຫຼຸດເສດສ່ວນ \frac{-8}{16} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 8.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=-\frac{1}{16}+\left(-\frac{1}{4}\right)^{2}
ຫານ -\frac{1}{2}, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ -\frac{1}{4}. ຈາກນັ້ນເພີ່ມຮາກຂອງ -\frac{1}{4} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{-1+1}{16}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ -\frac{1}{4} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}-\frac{1}{2}x+\frac{1}{16}=0
ເພີ່ມ -\frac{1}{16} ໃສ່ \frac{1}{16} ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
\left(x-\frac{1}{4}\right)^{2}=0
ຕົວປະກອບ x^{2}-\frac{1}{2}x+\frac{1}{16}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{0}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x-\frac{1}{4}=0 x-\frac{1}{4}=0
ເຮັດໃຫ້ງ່າຍ.
x=\frac{1}{4} x=\frac{1}{4}
ເພີ່ມ \frac{1}{4} ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
x=\frac{1}{4}
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ. ວິທີແກ້ແມ່ນຄືກັນ.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}