Skip ໄປຫາເນື້ອຫາຫຼັກ
ຕົວປະກອບ
Tick mark Image
ປະເມີນ
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

2\left(6x-x^{2}\right)
ຕົວປະກອບຈາກ 2.
x\left(6-x\right)
ພິຈາລະນາ 6x-x^{2}. ຕົວປະກອບຈາກ x.
2x\left(-x+6\right)
ຂຽນນິພົດແບບມີປັດໃຈສົມບູນ.
-2x^{2}+12x=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
x=\frac{-12±\sqrt{12^{2}}}{2\left(-2\right)}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-12±12}{2\left(-2\right)}
ເອົາຮາກຂັ້ນສອງຂອງ 12^{2}.
x=\frac{-12±12}{-4}
ຄູນ 2 ໃຫ້ກັບ -2.
x=\frac{0}{-4}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-12±12}{-4} ເມື່ອ ± ບວກ. ເພີ່ມ -12 ໃສ່ 12.
x=0
ຫານ 0 ດ້ວຍ -4.
x=-\frac{24}{-4}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-12±12}{-4} ເມື່ອ ± ເປັນລົບ. ລົບ 12 ອອກຈາກ -12.
x=6
ຫານ -24 ດ້ວຍ -4.
-2x^{2}+12x=-2x\left(x-6\right)
ຫານສົມຜົນຕົ້ນສະບັບໂດຍໃຊ້ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). ແທນ 0 ເປັນ x_{1} ແລະ 6 ເປັນ x_{2}.