Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

a+b=-5 ab=12\left(-3\right)=-36
ເພື່ອແກ້ສົມຜົນ, ໃຫ້ຫານທາງຊ້າຍໂດຍການຈັດກຸ່ມ, ທຳອິດ, ທາງຊ້າຍຈະຕ້ອງຂຽນໃໝ່ເປັນ 12x^{2}+ax+bx-3. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
1,-36 2,-18 3,-12 4,-9 6,-6
ເນື່ອງຈາກ ab ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງມີສັນຍາລັກກົງກັນຂ້າມ. ເນື່ອງຈາກ a+b ເປັນຄ່າລົບ, ຈຳນວນລົບມີຄ່າສົມບູນສູງກວ່າຈຳນວນບວກ. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ -36.
1-36=-35 2-18=-16 3-12=-9 4-9=-5 6-6=0
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-9 b=4
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ -5.
\left(12x^{2}-9x\right)+\left(4x-3\right)
ຂຽນ 12x^{2}-5x-3 ຄືນໃໝ່ເປັນ \left(12x^{2}-9x\right)+\left(4x-3\right).
3x\left(4x-3\right)+4x-3
ແຍກ 3x ອອກໃນ 12x^{2}-9x.
\left(4x-3\right)\left(3x+1\right)
ແຍກຄຳທົ່ວໄປ 4x-3 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
x=\frac{3}{4} x=-\frac{1}{3}
ເພື່ອຊອກຫາວິທີແກ້ສົມຜົນ, ໃຫ້ແກ້ 4x-3=0 ແລະ 3x+1=0.
12x^{2}-5x-3=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 12\left(-3\right)}}{2\times 12}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 12 ສຳລັບ a, -5 ສຳລັບ b ແລະ -3 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 12\left(-3\right)}}{2\times 12}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -5.
x=\frac{-\left(-5\right)±\sqrt{25-48\left(-3\right)}}{2\times 12}
ຄູນ -4 ໃຫ້ກັບ 12.
x=\frac{-\left(-5\right)±\sqrt{25+144}}{2\times 12}
ຄູນ -48 ໃຫ້ກັບ -3.
x=\frac{-\left(-5\right)±\sqrt{169}}{2\times 12}
ເພີ່ມ 25 ໃສ່ 144.
x=\frac{-\left(-5\right)±13}{2\times 12}
ເອົາຮາກຂັ້ນສອງຂອງ 169.
x=\frac{5±13}{2\times 12}
ຈຳນວນກົງກັນຂ້າມຂອງ -5 ແມ່ນ 5.
x=\frac{5±13}{24}
ຄູນ 2 ໃຫ້ກັບ 12.
x=\frac{18}{24}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{5±13}{24} ເມື່ອ ± ບວກ. ເພີ່ມ 5 ໃສ່ 13.
x=\frac{3}{4}
ຫຼຸດເສດສ່ວນ \frac{18}{24} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 6.
x=-\frac{8}{24}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{5±13}{24} ເມື່ອ ± ເປັນລົບ. ລົບ 13 ອອກຈາກ 5.
x=-\frac{1}{3}
ຫຼຸດເສດສ່ວນ \frac{-8}{24} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 8.
x=\frac{3}{4} x=-\frac{1}{3}
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
12x^{2}-5x-3=0
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
12x^{2}-5x-3-\left(-3\right)=-\left(-3\right)
ເພີ່ມ 3 ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
12x^{2}-5x=-\left(-3\right)
ການລົບ -3 ອອກຈາກຕົວມັນເອງຈະເຫຼືອ 0.
12x^{2}-5x=3
ລົບ -3 ອອກຈາກ 0.
\frac{12x^{2}-5x}{12}=\frac{3}{12}
ຫານທັງສອງຂ້າງດ້ວຍ 12.
x^{2}-\frac{5}{12}x=\frac{3}{12}
ການຫານດ້ວຍ 12 ຈະຍົກເລີກການຄູນດ້ວຍ 12.
x^{2}-\frac{5}{12}x=\frac{1}{4}
ຫຼຸດເສດສ່ວນ \frac{3}{12} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 3.
x^{2}-\frac{5}{12}x+\left(-\frac{5}{24}\right)^{2}=\frac{1}{4}+\left(-\frac{5}{24}\right)^{2}
ຫານ -\frac{5}{12}, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ -\frac{5}{24}. ຈາກນັ້ນເພີ່ມຮາກຂອງ -\frac{5}{24} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}-\frac{5}{12}x+\frac{25}{576}=\frac{1}{4}+\frac{25}{576}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ -\frac{5}{24} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}-\frac{5}{12}x+\frac{25}{576}=\frac{169}{576}
ເພີ່ມ \frac{1}{4} ໃສ່ \frac{25}{576} ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
\left(x-\frac{5}{24}\right)^{2}=\frac{169}{576}
ຕົວປະກອບ x^{2}-\frac{5}{12}x+\frac{25}{576}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x-\frac{5}{24}\right)^{2}}=\sqrt{\frac{169}{576}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x-\frac{5}{24}=\frac{13}{24} x-\frac{5}{24}=-\frac{13}{24}
ເຮັດໃຫ້ງ່າຍ.
x=\frac{3}{4} x=-\frac{1}{3}
ເພີ່ມ \frac{5}{24} ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.