Skip ໄປຫາເນື້ອຫາຫຼັກ
ຕົວປະກອບ
Tick mark Image
ປະເມີນ
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

4\left(3x^{2}-4x+2\right)
ຕົວປະກອບຈາກ 4. ພະຫຸນາມ 3x^{2}-4x+2 ບໍ່ແມ່ນປັດໃຈເນື່ອງຈາກມັນເປັນໂດຍບໍ່ມີຮາກເຫດຜົນໃດໆ.
12x^{2}-16x+8=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 12\times 8}}{2\times 12}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-\left(-16\right)±\sqrt{256-4\times 12\times 8}}{2\times 12}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -16.
x=\frac{-\left(-16\right)±\sqrt{256-48\times 8}}{2\times 12}
ຄູນ -4 ໃຫ້ກັບ 12.
x=\frac{-\left(-16\right)±\sqrt{256-384}}{2\times 12}
ຄູນ -48 ໃຫ້ກັບ 8.
x=\frac{-\left(-16\right)±\sqrt{-128}}{2\times 12}
ເພີ່ມ 256 ໃສ່ -384.
12x^{2}-16x+8
ເນື່ອງຈາກຮາກຂອງຈຳນວນລົບບໍ່ໄດ້ຖືກລະບຸໄວ້ໃນຊ່ອງຂໍ້ມູນຈິງ, ຈຶ່ງບໍ່ມີຄຳຕອບ. ບໍ່ສາມາດຫານສົມຜົນສອງຊັ້ນແບບພະຫຸນາມໄດ້.