ຕົວປະກອບ
\left(3x+4\right)\left(4x+11\right)
ປະເມີນ
\left(3x+4\right)\left(4x+11\right)
Graph
ແບ່ງປັນ
ສໍາເນົາຄລິບ
a+b=49 ab=12\times 44=528
ຕົວຫານນິພົດຕາມການຈັດກຸ່ມ. ທຳອິດນິພົດຕ້ອງຖືກຂຽນຄືນໃໝ່ເປັນ 12x^{2}+ax+bx+44. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
1,528 2,264 3,176 4,132 6,88 8,66 11,48 12,44 16,33 22,24
ເນື່ອງຈາກ ab ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງມີສັນຍາລັກດຽວກັນ. ເນື່ອງຈາກ a+b ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງເປັນຄ່າບວກທັງຄູ່. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ 528.
1+528=529 2+264=266 3+176=179 4+132=136 6+88=94 8+66=74 11+48=59 12+44=56 16+33=49 22+24=46
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=16 b=33
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ 49.
\left(12x^{2}+16x\right)+\left(33x+44\right)
ຂຽນ 12x^{2}+49x+44 ຄືນໃໝ່ເປັນ \left(12x^{2}+16x\right)+\left(33x+44\right).
4x\left(3x+4\right)+11\left(3x+4\right)
ຕົວຫານ 4x ໃນຕອນທຳອິດ ແລະ 11 ໃນກຸ່ມທີສອງ.
\left(3x+4\right)\left(4x+11\right)
ແຍກຄຳທົ່ວໄປ 3x+4 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
12x^{2}+49x+44=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
x=\frac{-49±\sqrt{49^{2}-4\times 12\times 44}}{2\times 12}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-49±\sqrt{2401-4\times 12\times 44}}{2\times 12}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 49.
x=\frac{-49±\sqrt{2401-48\times 44}}{2\times 12}
ຄູນ -4 ໃຫ້ກັບ 12.
x=\frac{-49±\sqrt{2401-2112}}{2\times 12}
ຄູນ -48 ໃຫ້ກັບ 44.
x=\frac{-49±\sqrt{289}}{2\times 12}
ເພີ່ມ 2401 ໃສ່ -2112.
x=\frac{-49±17}{2\times 12}
ເອົາຮາກຂັ້ນສອງຂອງ 289.
x=\frac{-49±17}{24}
ຄູນ 2 ໃຫ້ກັບ 12.
x=-\frac{32}{24}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-49±17}{24} ເມື່ອ ± ບວກ. ເພີ່ມ -49 ໃສ່ 17.
x=-\frac{4}{3}
ຫຼຸດເສດສ່ວນ \frac{-32}{24} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 8.
x=-\frac{66}{24}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-49±17}{24} ເມື່ອ ± ເປັນລົບ. ລົບ 17 ອອກຈາກ -49.
x=-\frac{11}{4}
ຫຼຸດເສດສ່ວນ \frac{-66}{24} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 6.
12x^{2}+49x+44=12\left(x-\left(-\frac{4}{3}\right)\right)\left(x-\left(-\frac{11}{4}\right)\right)
ຫານສົມຜົນຕົ້ນສະບັບໂດຍໃຊ້ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). ແທນ -\frac{4}{3} ເປັນ x_{1} ແລະ -\frac{11}{4} ເປັນ x_{2}.
12x^{2}+49x+44=12\left(x+\frac{4}{3}\right)\left(x+\frac{11}{4}\right)
ເຮັດໃຫ້ນິພົດທັງໝົດຂອງຮູບແບບ p-\left(-q\right) ເປັນ p+q.
12x^{2}+49x+44=12\times \frac{3x+4}{3}\left(x+\frac{11}{4}\right)
ເພີ່ມ \frac{4}{3} ໃສ່ x ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
12x^{2}+49x+44=12\times \frac{3x+4}{3}\times \frac{4x+11}{4}
ເພີ່ມ \frac{11}{4} ໃສ່ x ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
12x^{2}+49x+44=12\times \frac{\left(3x+4\right)\left(4x+11\right)}{3\times 4}
ຄູນ \frac{3x+4}{3} ກັບ \frac{4x+11}{4} ໂດຍການຄູນຕົວເສດຄູນຕົວເສດ ແລະ ຕົວຫານຄູນຫານ. ຈາກນັ້ນຫຼຸດເສດສ່ວນເປັນພົດທີ່ໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
12x^{2}+49x+44=12\times \frac{\left(3x+4\right)\left(4x+11\right)}{12}
ຄູນ 3 ໃຫ້ກັບ 4.
12x^{2}+49x+44=\left(3x+4\right)\left(4x+11\right)
ຍົກເລີກຕົວຄູນທີ່ໃຫຍ່ທີ່ສຸດ 12 ໃນ 12 ແລະ 12.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}