ແກ້ສຳລັບ x
x=-3
x=-2
Graph
ແບ່ງປັນ
ສໍາເນົາຄລິບ
x^{3}+8x^{2}+21x+18=0
ສະຫຼັບຂ້າງເພື່ອໃຫ້ພົດຕົວແປທັງໝົດຢູ່ຂ້າງຊ້າຍຂອງເຄື່ອງໝາຍເທົ່າກັບ.
±18,±9,±6,±3,±2,±1
ຂໍ້ພິສູດທາງວິທະຍາສາດຮາກແບບມີເຫດຜົນ, ຮາກເຫດຜົນທັງໝົດຂອງພະຫຸນາມໃດໜຶ່ງແມ່ນຢູ່ໃນຮູບແບບ \frac{p}{q}, ເຊິ່ງ p ຫານໃຫ້ຄ່າຄົງທີ່ 18 ແລະ q ຫານໃຫ້ຄ່າສຳປະສິດນຳໜ້າ 1. ລາຍຊື່ຜູ້ຄັດເລືອກທັງໝົດ \frac{p}{q}.
x=-2
ຊອກຫາຮາກໂດຍການລອງໃຊ້ຄ່າຈຳນວນເຕັມທັງໝົດ, ເລີ່ມຕົ້ນຈາກທີ່ນ້ອຍທີີ່ສຸດຕາມຄ່າແນ່ນອນ. ຫາກບໍ່ພົບຮາກຈຳນວນເຕັມ, ໃຫ້ລອງໃຊ້ການຫານ.
x^{2}+6x+9=0
ຕາມຂໍ້ພິສູດທາງຄະນິດສາດປັດໃຈ, x-k ເປັນປັດໃຈຂອງພະຫຸນາມສຳລັບແຕ່ລະຮາກ k. ຫານ x^{3}+8x^{2}+21x+18 ດ້ວຍ x+2 ເພື່ອໄດ້ x^{2}+6x+9. ແກ້ໄຂສົມຜົນທີ່ຜົນເທົ່າກັບ 0.
x=\frac{-6±\sqrt{6^{2}-4\times 1\times 9}}{2}
ສົມຜົນທັງໝົດຈາກແບບຟອມ ax^{2}+bx+c=0 ສາມາດແກ້ໄຂໄດ້ໂດຍໃຊ້ສູດຄຳນວນກຳລັງສອງ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ແທນ 1 ໃຫ້ a, 6 ໃຫ້ b ແລະ 9 ໃຫ້ c ໃນສູດຄຳນວນກຳລັງສອງ.
x=\frac{-6±0}{2}
ເລີ່ມຄຳນວນ.
x=-3
ວິທີແກ້ແມ່ນຄືກັນ.
x=-2 x=-3
ລາຍຊື່ຂອງວິທີແກ້ໄຂທັງໝົດທີ່ພົບ.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}