ແກ້ສຳລັບ x
x=-\frac{3}{4}=-0,75
x=1
Graph
ແບ່ງປັນ
ສໍາເນົາຄລິບ
4x^{2}-x-3=0
ສະຫຼັບຂ້າງເພື່ອໃຫ້ພົດຕົວແປທັງໝົດຢູ່ຂ້າງຊ້າຍຂອງເຄື່ອງໝາຍເທົ່າກັບ.
a+b=-1 ab=4\left(-3\right)=-12
ເພື່ອແກ້ສົມຜົນ, ໃຫ້ຫານທາງຊ້າຍໂດຍການຈັດກຸ່ມ, ທຳອິດ, ທາງຊ້າຍຈະຕ້ອງຂຽນໃໝ່ເປັນ 4x^{2}+ax+bx-3. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
1,-12 2,-6 3,-4
ເນື່ອງຈາກ ab ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງມີສັນຍາລັກກົງກັນຂ້າມ. ເນື່ອງຈາກ a+b ເປັນຄ່າລົບ, ຈຳນວນລົບມີຄ່າສົມບູນສູງກວ່າຈຳນວນບວກ. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ -12.
1-12=-11 2-6=-4 3-4=-1
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-4 b=3
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ -1.
\left(4x^{2}-4x\right)+\left(3x-3\right)
ຂຽນ 4x^{2}-x-3 ຄືນໃໝ່ເປັນ \left(4x^{2}-4x\right)+\left(3x-3\right).
4x\left(x-1\right)+3\left(x-1\right)
ຕົວຫານ 4x ໃນຕອນທຳອິດ ແລະ 3 ໃນກຸ່ມທີສອງ.
\left(x-1\right)\left(4x+3\right)
ແຍກຄຳທົ່ວໄປ x-1 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
x=1 x=-\frac{3}{4}
ເພື່ອຊອກຫາວິທີແກ້ສົມຜົນ, ໃຫ້ແກ້ x-1=0 ແລະ 4x+3=0.
4x^{2}-x-3=0
ສະຫຼັບຂ້າງເພື່ອໃຫ້ພົດຕົວແປທັງໝົດຢູ່ຂ້າງຊ້າຍຂອງເຄື່ອງໝາຍເທົ່າກັບ.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 4\left(-3\right)}}{2\times 4}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 4 ສຳລັບ a, -1 ສຳລັບ b ແລະ -3 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-16\left(-3\right)}}{2\times 4}
ຄູນ -4 ໃຫ້ກັບ 4.
x=\frac{-\left(-1\right)±\sqrt{1+48}}{2\times 4}
ຄູນ -16 ໃຫ້ກັບ -3.
x=\frac{-\left(-1\right)±\sqrt{49}}{2\times 4}
ເພີ່ມ 1 ໃສ່ 48.
x=\frac{-\left(-1\right)±7}{2\times 4}
ເອົາຮາກຂັ້ນສອງຂອງ 49.
x=\frac{1±7}{2\times 4}
ຈຳນວນກົງກັນຂ້າມຂອງ -1 ແມ່ນ 1.
x=\frac{1±7}{8}
ຄູນ 2 ໃຫ້ກັບ 4.
x=\frac{8}{8}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{1±7}{8} ເມື່ອ ± ບວກ. ເພີ່ມ 1 ໃສ່ 7.
x=1
ຫານ 8 ດ້ວຍ 8.
x=-\frac{6}{8}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{1±7}{8} ເມື່ອ ± ເປັນລົບ. ລົບ 7 ອອກຈາກ 1.
x=-\frac{3}{4}
ຫຼຸດເສດສ່ວນ \frac{-6}{8} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 2.
x=1 x=-\frac{3}{4}
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
4x^{2}-x-3=0
ສະຫຼັບຂ້າງເພື່ອໃຫ້ພົດຕົວແປທັງໝົດຢູ່ຂ້າງຊ້າຍຂອງເຄື່ອງໝາຍເທົ່າກັບ.
4x^{2}-x=3
ເພີ່ມ 3 ໃສ່ທັງສອງດ້ານ. ອັນໃດກໍໄດ້ບວກສູນໄດ້ຕົວມັນເອງ.
\frac{4x^{2}-x}{4}=\frac{3}{4}
ຫານທັງສອງຂ້າງດ້ວຍ 4.
x^{2}-\frac{1}{4}x=\frac{3}{4}
ການຫານດ້ວຍ 4 ຈະຍົກເລີກການຄູນດ້ວຍ 4.
x^{2}-\frac{1}{4}x+\left(-\frac{1}{8}\right)^{2}=\frac{3}{4}+\left(-\frac{1}{8}\right)^{2}
ຫານ -\frac{1}{4}, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ -\frac{1}{8}. ຈາກນັ້ນເພີ່ມຮາກຂອງ -\frac{1}{8} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}-\frac{1}{4}x+\frac{1}{64}=\frac{3}{4}+\frac{1}{64}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ -\frac{1}{8} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}-\frac{1}{4}x+\frac{1}{64}=\frac{49}{64}
ເພີ່ມ \frac{3}{4} ໃສ່ \frac{1}{64} ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
\left(x-\frac{1}{8}\right)^{2}=\frac{49}{64}
ຕົວປະກອບ x^{2}-\frac{1}{4}x+\frac{1}{64}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x-\frac{1}{8}\right)^{2}}=\sqrt{\frac{49}{64}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x-\frac{1}{8}=\frac{7}{8} x-\frac{1}{8}=-\frac{7}{8}
ເຮັດໃຫ້ງ່າຍ.
x=1 x=-\frac{3}{4}
ເພີ່ມ \frac{1}{8} ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}