Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

x\left(-3x-2\right)=0
ຕົວປະກອບຈາກ x.
x=0 x=-\frac{2}{3}
ເພື່ອຊອກຫາວິທີແກ້ສົມຜົນ, ໃຫ້ແກ້ x=0 ແລະ -3x-2=0.
-3x^{2}-2x=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}}}{2\left(-3\right)}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ -3 ສຳລັບ a, -2 ສຳລັບ b ແລະ 0 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±2}{2\left(-3\right)}
ເອົາຮາກຂັ້ນສອງຂອງ \left(-2\right)^{2}.
x=\frac{2±2}{2\left(-3\right)}
ຈຳນວນກົງກັນຂ້າມຂອງ -2 ແມ່ນ 2.
x=\frac{2±2}{-6}
ຄູນ 2 ໃຫ້ກັບ -3.
x=\frac{4}{-6}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{2±2}{-6} ເມື່ອ ± ບວກ. ເພີ່ມ 2 ໃສ່ 2.
x=-\frac{2}{3}
ຫຼຸດເສດສ່ວນ \frac{4}{-6} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 2.
x=\frac{0}{-6}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{2±2}{-6} ເມື່ອ ± ເປັນລົບ. ລົບ 2 ອອກຈາກ 2.
x=0
ຫານ 0 ດ້ວຍ -6.
x=-\frac{2}{3} x=0
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
-3x^{2}-2x=0
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
\frac{-3x^{2}-2x}{-3}=\frac{0}{-3}
ຫານທັງສອງຂ້າງດ້ວຍ -3.
x^{2}+\left(-\frac{2}{-3}\right)x=\frac{0}{-3}
ການຫານດ້ວຍ -3 ຈະຍົກເລີກການຄູນດ້ວຍ -3.
x^{2}+\frac{2}{3}x=\frac{0}{-3}
ຫານ -2 ດ້ວຍ -3.
x^{2}+\frac{2}{3}x=0
ຫານ 0 ດ້ວຍ -3.
x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}=\left(\frac{1}{3}\right)^{2}
ຫານ \frac{2}{3}, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ \frac{1}{3}. ຈາກນັ້ນເພີ່ມຮາກຂອງ \frac{1}{3} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{1}{9}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ \frac{1}{3} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
\left(x+\frac{1}{3}\right)^{2}=\frac{1}{9}
ຕົວປະກອບ x^{2}+\frac{2}{3}x+\frac{1}{9}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x+\frac{1}{3}\right)^{2}}=\sqrt{\frac{1}{9}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x+\frac{1}{3}=\frac{1}{3} x+\frac{1}{3}=-\frac{1}{3}
ເຮັດໃຫ້ງ່າຍ.
x=0 x=-\frac{2}{3}
ລົບ \frac{1}{3} ອອກຈາກສົມຜົນທັງສອງຂ້າງ.