Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

a+b=4 ab=-3\times 4=-12
ເພື່ອແກ້ສົມຜົນ, ໃຫ້ຫານທາງຊ້າຍໂດຍການຈັດກຸ່ມ, ທຳອິດ, ທາງຊ້າຍຈະຕ້ອງຂຽນໃໝ່ເປັນ -3x^{2}+ax+bx+4. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
-1,12 -2,6 -3,4
ເນື່ອງຈາກ ab ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງມີສັນຍາລັກກົງກັນຂ້າມ. ເນື່ອງຈາກ a+b ເປັນຄ່າບວກ, ຈຳນວນບວກຈຶ່ງມີຄ່າສົມບູນສູງກວ່າຈຳນວນລົບ. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ -12.
-1+12=11 -2+6=4 -3+4=1
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=6 b=-2
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ 4.
\left(-3x^{2}+6x\right)+\left(-2x+4\right)
ຂຽນ -3x^{2}+4x+4 ຄືນໃໝ່ເປັນ \left(-3x^{2}+6x\right)+\left(-2x+4\right).
3x\left(-x+2\right)+2\left(-x+2\right)
ຕົວຫານ 3x ໃນຕອນທຳອິດ ແລະ 2 ໃນກຸ່ມທີສອງ.
\left(-x+2\right)\left(3x+2\right)
ແຍກຄຳທົ່ວໄປ -x+2 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
x=2 x=-\frac{2}{3}
ເພື່ອຊອກຫາວິທີແກ້ສົມຜົນ, ໃຫ້ແກ້ -x+2=0 ແລະ 3x+2=0.
-3x^{2}+4x+4=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-4±\sqrt{4^{2}-4\left(-3\right)\times 4}}{2\left(-3\right)}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ -3 ສຳລັບ a, 4 ສຳລັບ b ແລະ 4 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-3\right)\times 4}}{2\left(-3\right)}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 4.
x=\frac{-4±\sqrt{16+12\times 4}}{2\left(-3\right)}
ຄູນ -4 ໃຫ້ກັບ -3.
x=\frac{-4±\sqrt{16+48}}{2\left(-3\right)}
ຄູນ 12 ໃຫ້ກັບ 4.
x=\frac{-4±\sqrt{64}}{2\left(-3\right)}
ເພີ່ມ 16 ໃສ່ 48.
x=\frac{-4±8}{2\left(-3\right)}
ເອົາຮາກຂັ້ນສອງຂອງ 64.
x=\frac{-4±8}{-6}
ຄູນ 2 ໃຫ້ກັບ -3.
x=\frac{4}{-6}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-4±8}{-6} ເມື່ອ ± ບວກ. ເພີ່ມ -4 ໃສ່ 8.
x=-\frac{2}{3}
ຫຼຸດເສດສ່ວນ \frac{4}{-6} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 2.
x=-\frac{12}{-6}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-4±8}{-6} ເມື່ອ ± ເປັນລົບ. ລົບ 8 ອອກຈາກ -4.
x=2
ຫານ -12 ດ້ວຍ -6.
x=-\frac{2}{3} x=2
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
-3x^{2}+4x+4=0
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
-3x^{2}+4x+4-4=-4
ລົບ 4 ອອກຈາກສົມຜົນທັງສອງຂ້າງ.
-3x^{2}+4x=-4
ການລົບ 4 ອອກຈາກຕົວມັນເອງຈະເຫຼືອ 0.
\frac{-3x^{2}+4x}{-3}=-\frac{4}{-3}
ຫານທັງສອງຂ້າງດ້ວຍ -3.
x^{2}+\frac{4}{-3}x=-\frac{4}{-3}
ການຫານດ້ວຍ -3 ຈະຍົກເລີກການຄູນດ້ວຍ -3.
x^{2}-\frac{4}{3}x=-\frac{4}{-3}
ຫານ 4 ດ້ວຍ -3.
x^{2}-\frac{4}{3}x=\frac{4}{3}
ຫານ -4 ດ້ວຍ -3.
x^{2}-\frac{4}{3}x+\left(-\frac{2}{3}\right)^{2}=\frac{4}{3}+\left(-\frac{2}{3}\right)^{2}
ຫານ -\frac{4}{3}, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ -\frac{2}{3}. ຈາກນັ້ນເພີ່ມຮາກຂອງ -\frac{2}{3} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{4}{3}+\frac{4}{9}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ -\frac{2}{3} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{16}{9}
ເພີ່ມ \frac{4}{3} ໃສ່ \frac{4}{9} ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
\left(x-\frac{2}{3}\right)^{2}=\frac{16}{9}
ຕົວປະກອບ x^{2}-\frac{4}{3}x+\frac{4}{9}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x-\frac{2}{3}\right)^{2}}=\sqrt{\frac{16}{9}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x-\frac{2}{3}=\frac{4}{3} x-\frac{2}{3}=-\frac{4}{3}
ເຮັດໃຫ້ງ່າຍ.
x=2 x=-\frac{2}{3}
ເພີ່ມ \frac{2}{3} ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.