ແກ້ສຳລັບ x
x=1
x=5
Graph
ແບ່ງປັນ
ສໍາເນົາຄລິບ
a+b=6 ab=-\left(-5\right)=5
ເພື່ອແກ້ສົມຜົນ, ໃຫ້ຫານທາງຊ້າຍໂດຍການຈັດກຸ່ມ, ທຳອິດ, ທາງຊ້າຍຈະຕ້ອງຂຽນໃໝ່ເປັນ -x^{2}+ax+bx-5. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
a=5 b=1
ເນື່ອງຈາກ ab ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງມີສັນຍາລັກດຽວກັນ. ເນື່ອງຈາກ a+b ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງເປັນຄ່າບວກທັງຄູ່. ຄູ່ດັ່ງກ່າວເປັນທາງອອກລະບົບ.
\left(-x^{2}+5x\right)+\left(x-5\right)
ຂຽນ -x^{2}+6x-5 ຄືນໃໝ່ເປັນ \left(-x^{2}+5x\right)+\left(x-5\right).
-x\left(x-5\right)+x-5
ແຍກ -x ອອກໃນ -x^{2}+5x.
\left(x-5\right)\left(-x+1\right)
ແຍກຄຳທົ່ວໄປ x-5 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
x=5 x=1
ເພື່ອຊອກຫາວິທີແກ້ສົມຜົນ, ໃຫ້ແກ້ x-5=0 ແລະ -x+1=0.
-x^{2}+6x-5=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-6±\sqrt{6^{2}-4\left(-1\right)\left(-5\right)}}{2\left(-1\right)}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ -1 ສຳລັບ a, 6 ສຳລັບ b ແລະ -5 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\left(-1\right)\left(-5\right)}}{2\left(-1\right)}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 6.
x=\frac{-6±\sqrt{36+4\left(-5\right)}}{2\left(-1\right)}
ຄູນ -4 ໃຫ້ກັບ -1.
x=\frac{-6±\sqrt{36-20}}{2\left(-1\right)}
ຄູນ 4 ໃຫ້ກັບ -5.
x=\frac{-6±\sqrt{16}}{2\left(-1\right)}
ເພີ່ມ 36 ໃສ່ -20.
x=\frac{-6±4}{2\left(-1\right)}
ເອົາຮາກຂັ້ນສອງຂອງ 16.
x=\frac{-6±4}{-2}
ຄູນ 2 ໃຫ້ກັບ -1.
x=-\frac{2}{-2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-6±4}{-2} ເມື່ອ ± ບວກ. ເພີ່ມ -6 ໃສ່ 4.
x=1
ຫານ -2 ດ້ວຍ -2.
x=-\frac{10}{-2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-6±4}{-2} ເມື່ອ ± ເປັນລົບ. ລົບ 4 ອອກຈາກ -6.
x=5
ຫານ -10 ດ້ວຍ -2.
x=1 x=5
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
-x^{2}+6x-5=0
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
-x^{2}+6x-5-\left(-5\right)=-\left(-5\right)
ເພີ່ມ 5 ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
-x^{2}+6x=-\left(-5\right)
ການລົບ -5 ອອກຈາກຕົວມັນເອງຈະເຫຼືອ 0.
-x^{2}+6x=5
ລົບ -5 ອອກຈາກ 0.
\frac{-x^{2}+6x}{-1}=\frac{5}{-1}
ຫານທັງສອງຂ້າງດ້ວຍ -1.
x^{2}+\frac{6}{-1}x=\frac{5}{-1}
ການຫານດ້ວຍ -1 ຈະຍົກເລີກການຄູນດ້ວຍ -1.
x^{2}-6x=\frac{5}{-1}
ຫານ 6 ດ້ວຍ -1.
x^{2}-6x=-5
ຫານ 5 ດ້ວຍ -1.
x^{2}-6x+\left(-3\right)^{2}=-5+\left(-3\right)^{2}
ຫານ -6, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ -3. ຈາກນັ້ນເພີ່ມຮາກຂອງ -3 ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}-6x+9=-5+9
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -3.
x^{2}-6x+9=4
ເພີ່ມ -5 ໃສ່ 9.
\left(x-3\right)^{2}=4
ຕົວປະກອບ x^{2}-6x+9. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x-3\right)^{2}}=\sqrt{4}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x-3=2 x-3=-2
ເຮັດໃຫ້ງ່າຍ.
x=5 x=1
ເພີ່ມ 3 ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}