Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

a+b=-5 ab=-4\left(-1\right)=4
ເພື່ອແກ້ສົມຜົນ, ໃຫ້ຫານທາງຊ້າຍໂດຍການຈັດກຸ່ມ, ທຳອິດ, ທາງຊ້າຍຈະຕ້ອງຂຽນໃໝ່ເປັນ -4x^{2}+ax+bx-1. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
-1,-4 -2,-2
ເນື່ອງຈາກ ab ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງມີສັນຍາລັກດຽວກັນ. ເນື່ອງຈາກ a+b ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງເປັນຄ່າລົບທັງຄູ່. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ 4.
-1-4=-5 -2-2=-4
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-1 b=-4
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ -5.
\left(-4x^{2}-x\right)+\left(-4x-1\right)
ຂຽນ -4x^{2}-5x-1 ຄືນໃໝ່ເປັນ \left(-4x^{2}-x\right)+\left(-4x-1\right).
-x\left(4x+1\right)-\left(4x+1\right)
ຕົວຫານ -x ໃນຕອນທຳອິດ ແລະ -1 ໃນກຸ່ມທີສອງ.
\left(4x+1\right)\left(-x-1\right)
ແຍກຄຳທົ່ວໄປ 4x+1 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
x=-\frac{1}{4} x=-1
ເພື່ອຊອກຫາວິທີແກ້ສົມຜົນ, ໃຫ້ແກ້ 4x+1=0 ແລະ -x-1=0.
-4x^{2}-5x-1=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-4\right)\left(-1\right)}}{2\left(-4\right)}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ -4 ສຳລັບ a, -5 ສຳລັບ b ແລະ -1 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-4\right)\left(-1\right)}}{2\left(-4\right)}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -5.
x=\frac{-\left(-5\right)±\sqrt{25+16\left(-1\right)}}{2\left(-4\right)}
ຄູນ -4 ໃຫ້ກັບ -4.
x=\frac{-\left(-5\right)±\sqrt{25-16}}{2\left(-4\right)}
ຄູນ 16 ໃຫ້ກັບ -1.
x=\frac{-\left(-5\right)±\sqrt{9}}{2\left(-4\right)}
ເພີ່ມ 25 ໃສ່ -16.
x=\frac{-\left(-5\right)±3}{2\left(-4\right)}
ເອົາຮາກຂັ້ນສອງຂອງ 9.
x=\frac{5±3}{2\left(-4\right)}
ຈຳນວນກົງກັນຂ້າມຂອງ -5 ແມ່ນ 5.
x=\frac{5±3}{-8}
ຄູນ 2 ໃຫ້ກັບ -4.
x=\frac{8}{-8}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{5±3}{-8} ເມື່ອ ± ບວກ. ເພີ່ມ 5 ໃສ່ 3.
x=-1
ຫານ 8 ດ້ວຍ -8.
x=\frac{2}{-8}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{5±3}{-8} ເມື່ອ ± ເປັນລົບ. ລົບ 3 ອອກຈາກ 5.
x=-\frac{1}{4}
ຫຼຸດເສດສ່ວນ \frac{2}{-8} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 2.
x=-1 x=-\frac{1}{4}
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
-4x^{2}-5x-1=0
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
-4x^{2}-5x-1-\left(-1\right)=-\left(-1\right)
ເພີ່ມ 1 ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
-4x^{2}-5x=-\left(-1\right)
ການລົບ -1 ອອກຈາກຕົວມັນເອງຈະເຫຼືອ 0.
-4x^{2}-5x=1
ລົບ -1 ອອກຈາກ 0.
\frac{-4x^{2}-5x}{-4}=\frac{1}{-4}
ຫານທັງສອງຂ້າງດ້ວຍ -4.
x^{2}+\left(-\frac{5}{-4}\right)x=\frac{1}{-4}
ການຫານດ້ວຍ -4 ຈະຍົກເລີກການຄູນດ້ວຍ -4.
x^{2}+\frac{5}{4}x=\frac{1}{-4}
ຫານ -5 ດ້ວຍ -4.
x^{2}+\frac{5}{4}x=-\frac{1}{4}
ຫານ 1 ດ້ວຍ -4.
x^{2}+\frac{5}{4}x+\left(\frac{5}{8}\right)^{2}=-\frac{1}{4}+\left(\frac{5}{8}\right)^{2}
ຫານ \frac{5}{4}, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ \frac{5}{8}. ຈາກນັ້ນເພີ່ມຮາກຂອງ \frac{5}{8} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}+\frac{5}{4}x+\frac{25}{64}=-\frac{1}{4}+\frac{25}{64}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ \frac{5}{8} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}+\frac{5}{4}x+\frac{25}{64}=\frac{9}{64}
ເພີ່ມ -\frac{1}{4} ໃສ່ \frac{25}{64} ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
\left(x+\frac{5}{8}\right)^{2}=\frac{9}{64}
ຕົວປະກອບ x^{2}+\frac{5}{4}x+\frac{25}{64}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x+\frac{5}{8}\right)^{2}}=\sqrt{\frac{9}{64}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x+\frac{5}{8}=\frac{3}{8} x+\frac{5}{8}=-\frac{3}{8}
ເຮັດໃຫ້ງ່າຍ.
x=-\frac{1}{4} x=-1
ລົບ \frac{5}{8} ອອກຈາກສົມຜົນທັງສອງຂ້າງ.