Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ B
Tick mark Image

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

a+b=4 ab=-4\left(-1\right)=4
ເພື່ອແກ້ສົມຜົນ, ໃຫ້ຫານທາງຊ້າຍໂດຍການຈັດກຸ່ມ, ທຳອິດ, ທາງຊ້າຍຈະຕ້ອງຂຽນໃໝ່ເປັນ -4B^{2}+aB+bB-1. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
1,4 2,2
ເນື່ອງຈາກ ab ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງມີສັນຍາລັກດຽວກັນ. ເນື່ອງຈາກ a+b ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງເປັນຄ່າບວກທັງຄູ່. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ 4.
1+4=5 2+2=4
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=2 b=2
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ 4.
\left(-4B^{2}+2B\right)+\left(2B-1\right)
ຂຽນ -4B^{2}+4B-1 ຄືນໃໝ່ເປັນ \left(-4B^{2}+2B\right)+\left(2B-1\right).
-2B\left(2B-1\right)+2B-1
ແຍກ -2B ອອກໃນ -4B^{2}+2B.
\left(2B-1\right)\left(-2B+1\right)
ແຍກຄຳທົ່ວໄປ 2B-1 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
B=\frac{1}{2} B=\frac{1}{2}
ເພື່ອຊອກຫາວິທີແກ້ສົມຜົນ, ໃຫ້ແກ້ 2B-1=0 ແລະ -2B+1=0.
-4B^{2}+4B-1=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
B=\frac{-4±\sqrt{4^{2}-4\left(-4\right)\left(-1\right)}}{2\left(-4\right)}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ -4 ສຳລັບ a, 4 ສຳລັບ b ແລະ -1 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
B=\frac{-4±\sqrt{16-4\left(-4\right)\left(-1\right)}}{2\left(-4\right)}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 4.
B=\frac{-4±\sqrt{16+16\left(-1\right)}}{2\left(-4\right)}
ຄູນ -4 ໃຫ້ກັບ -4.
B=\frac{-4±\sqrt{16-16}}{2\left(-4\right)}
ຄູນ 16 ໃຫ້ກັບ -1.
B=\frac{-4±\sqrt{0}}{2\left(-4\right)}
ເພີ່ມ 16 ໃສ່ -16.
B=-\frac{4}{2\left(-4\right)}
ເອົາຮາກຂັ້ນສອງຂອງ 0.
B=-\frac{4}{-8}
ຄູນ 2 ໃຫ້ກັບ -4.
B=\frac{1}{2}
ຫຼຸດເສດສ່ວນ \frac{-4}{-8} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 4.
-4B^{2}+4B-1=0
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
-4B^{2}+4B-1-\left(-1\right)=-\left(-1\right)
ເພີ່ມ 1 ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
-4B^{2}+4B=-\left(-1\right)
ການລົບ -1 ອອກຈາກຕົວມັນເອງຈະເຫຼືອ 0.
-4B^{2}+4B=1
ລົບ -1 ອອກຈາກ 0.
\frac{-4B^{2}+4B}{-4}=\frac{1}{-4}
ຫານທັງສອງຂ້າງດ້ວຍ -4.
B^{2}+\frac{4}{-4}B=\frac{1}{-4}
ການຫານດ້ວຍ -4 ຈະຍົກເລີກການຄູນດ້ວຍ -4.
B^{2}-B=\frac{1}{-4}
ຫານ 4 ດ້ວຍ -4.
B^{2}-B=-\frac{1}{4}
ຫານ 1 ດ້ວຍ -4.
B^{2}-B+\left(-\frac{1}{2}\right)^{2}=-\frac{1}{4}+\left(-\frac{1}{2}\right)^{2}
ຫານ -1, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ -\frac{1}{2}. ຈາກນັ້ນເພີ່ມຮາກຂອງ -\frac{1}{2} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
B^{2}-B+\frac{1}{4}=\frac{-1+1}{4}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ -\frac{1}{2} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
B^{2}-B+\frac{1}{4}=0
ເພີ່ມ -\frac{1}{4} ໃສ່ \frac{1}{4} ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
\left(B-\frac{1}{2}\right)^{2}=0
ຕົວປະກອບ B^{2}-B+\frac{1}{4}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(B-\frac{1}{2}\right)^{2}}=\sqrt{0}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
B-\frac{1}{2}=0 B-\frac{1}{2}=0
ເຮັດໃຫ້ງ່າຍ.
B=\frac{1}{2} B=\frac{1}{2}
ເພີ່ມ \frac{1}{2} ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
B=\frac{1}{2}
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ. ວິທີແກ້ແມ່ນຄືກັນ.