Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

-3x\left(2+3x\right)=1
ຮວມ -x ແລະ 4x ເພື່ອຮັບ 3x.
-6x-9x^{2}=1
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ -3x ດ້ວຍ 2+3x.
-6x-9x^{2}-1=0
ລົບ 1 ອອກຈາກທັງສອງຂ້າງ.
-9x^{2}-6x-1=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-9\right)\left(-1\right)}}{2\left(-9\right)}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ -9 ສຳລັບ a, -6 ສຳລັບ b ແລະ -1 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-9\right)\left(-1\right)}}{2\left(-9\right)}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -6.
x=\frac{-\left(-6\right)±\sqrt{36+36\left(-1\right)}}{2\left(-9\right)}
ຄູນ -4 ໃຫ້ກັບ -9.
x=\frac{-\left(-6\right)±\sqrt{36-36}}{2\left(-9\right)}
ຄູນ 36 ໃຫ້ກັບ -1.
x=\frac{-\left(-6\right)±\sqrt{0}}{2\left(-9\right)}
ເພີ່ມ 36 ໃສ່ -36.
x=-\frac{-6}{2\left(-9\right)}
ເອົາຮາກຂັ້ນສອງຂອງ 0.
x=\frac{6}{2\left(-9\right)}
ຈຳນວນກົງກັນຂ້າມຂອງ -6 ແມ່ນ 6.
x=\frac{6}{-18}
ຄູນ 2 ໃຫ້ກັບ -9.
x=-\frac{1}{3}
ຫຼຸດເສດສ່ວນ \frac{6}{-18} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 6.
-3x\left(2+3x\right)=1
ຮວມ -x ແລະ 4x ເພື່ອຮັບ 3x.
-6x-9x^{2}=1
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ -3x ດ້ວຍ 2+3x.
-9x^{2}-6x=1
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
\frac{-9x^{2}-6x}{-9}=\frac{1}{-9}
ຫານທັງສອງຂ້າງດ້ວຍ -9.
x^{2}+\left(-\frac{6}{-9}\right)x=\frac{1}{-9}
ການຫານດ້ວຍ -9 ຈະຍົກເລີກການຄູນດ້ວຍ -9.
x^{2}+\frac{2}{3}x=\frac{1}{-9}
ຫຼຸດເສດສ່ວນ \frac{-6}{-9} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 3.
x^{2}+\frac{2}{3}x=-\frac{1}{9}
ຫານ 1 ດ້ວຍ -9.
x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}=-\frac{1}{9}+\left(\frac{1}{3}\right)^{2}
ຫານ \frac{2}{3}, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ \frac{1}{3}. ຈາກນັ້ນເພີ່ມຮາກຂອງ \frac{1}{3} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{-1+1}{9}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ \frac{1}{3} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}+\frac{2}{3}x+\frac{1}{9}=0
ເພີ່ມ -\frac{1}{9} ໃສ່ \frac{1}{9} ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
\left(x+\frac{1}{3}\right)^{2}=0
ຕົວປະກອບ x^{2}+\frac{2}{3}x+\frac{1}{9}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x+\frac{1}{3}\right)^{2}}=\sqrt{0}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x+\frac{1}{3}=0 x+\frac{1}{3}=0
ເຮັດໃຫ້ງ່າຍ.
x=-\frac{1}{3} x=-\frac{1}{3}
ລົບ \frac{1}{3} ອອກຈາກສົມຜົນທັງສອງຂ້າງ.
x=-\frac{1}{3}
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ. ວິທີແກ້ແມ່ນຄືກັນ.