Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

3x^{2}+8x-3>0
ຄູນຄວາມບໍ່ເທົ່າກັນດ້ວຍ -1 ເພື່ອເຮັດໃຫ້ຄ່າສຳປະສິດຂອງກຳລັງສູງສຸດໃນ -3x^{2}-8x+3 ບວກ. ເນື່ອງຈາກ -1 ເປັນຄ່າລົບ, ເສັ້ນທາງທີ່ບໍ່ເທົ່າກັນຈຶ່ງມີການປ່ຽນແປງແລ້ວ.
3x^{2}+8x-3=0
ເພື່ອແກ້ໄຂຄວາມບໍ່ເທົ່າກັນ, ໃຫ້ວາງຕົວປະກອບໄວ້ຊ້າຍມື. Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
x=\frac{-8±\sqrt{8^{2}-4\times 3\left(-3\right)}}{2\times 3}
ສົມຜົນທັງໝົດຈາກແບບຟອມ ax^{2}+bx+c=0 ສາມາດແກ້ໄຂໄດ້ໂດຍໃຊ້ສູດຄຳນວນກຳລັງສອງ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ແທນ 3 ໃຫ້ a, 8 ໃຫ້ b ແລະ -3 ໃຫ້ c ໃນສູດຄຳນວນກຳລັງສອງ.
x=\frac{-8±10}{6}
ເລີ່ມຄຳນວນ.
x=\frac{1}{3} x=-3
ແກ້ສົມຜົນ x=\frac{-8±10}{6} ເມື່ອ ± ເປັນບວກ ແລະ ± ເປັນລົບ.
3\left(x-\frac{1}{3}\right)\left(x+3\right)>0
ຂຽນຄວາມບໍ່ເທົ່າກັນຄືນໃໝ່ໂດຍໃຊ້ວິທີທີ່ໄດ້ຮັບມາ.
x-\frac{1}{3}<0 x+3<0
ເພື່ອໃຫ້ຜະລິດຕະພັນເປັນຄ່າບວກ, x-\frac{1}{3} ແລະ x+3 ຈະຕ້ອງເປັນຄ່າລົບ ຫຼື ຄ່າບວກທັງສອງ. ໃຫ້ພິຈາລະນາເມື່ອ x-\frac{1}{3} ແລະ x+3 ຕ່າງກໍເປັນຄ່າລົບ.
x<-3
ວິທີແກ້ທີ່ຈັດການຄວາມບໍ່ເທົ່າກັນທັງສອງໄດ້ແມ່ນ x<-3.
x+3>0 x-\frac{1}{3}>0
ໃຫ້ພິຈາລະນາເມື່ອ x-\frac{1}{3} ແລະ x+3 ຕ່າງກໍເປັນຄ່າບວກ.
x>\frac{1}{3}
ວິທີແກ້ທີ່ຈັດການຄວາມບໍ່ເທົ່າກັນທັງສອງໄດ້ແມ່ນ x>\frac{1}{3}.
x<-3\text{; }x>\frac{1}{3}
ວິທີແກ້ສຸດທ້າຍແມ່ນເປັນການຮວມວິທີການທີ່ຊອກມາໄດ້.