ແກ້ສຳລັບ z
z=\frac{-\sqrt{839}i+1}{4}\approx 0,25-7,241374179i
z=\frac{1+\sqrt{839}i}{4}\approx 0,25+7,241374179i
ແບ່ງປັນ
ສໍາເນົາຄລິບ
-2z^{2}+z-105=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
z=\frac{-1±\sqrt{1^{2}-4\left(-2\right)\left(-105\right)}}{2\left(-2\right)}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ -2 ສຳລັບ a, 1 ສຳລັບ b ແລະ -105 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{-1±\sqrt{1-4\left(-2\right)\left(-105\right)}}{2\left(-2\right)}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 1.
z=\frac{-1±\sqrt{1+8\left(-105\right)}}{2\left(-2\right)}
ຄູນ -4 ໃຫ້ກັບ -2.
z=\frac{-1±\sqrt{1-840}}{2\left(-2\right)}
ຄູນ 8 ໃຫ້ກັບ -105.
z=\frac{-1±\sqrt{-839}}{2\left(-2\right)}
ເພີ່ມ 1 ໃສ່ -840.
z=\frac{-1±\sqrt{839}i}{2\left(-2\right)}
ເອົາຮາກຂັ້ນສອງຂອງ -839.
z=\frac{-1±\sqrt{839}i}{-4}
ຄູນ 2 ໃຫ້ກັບ -2.
z=\frac{-1+\sqrt{839}i}{-4}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ z=\frac{-1±\sqrt{839}i}{-4} ເມື່ອ ± ບວກ. ເພີ່ມ -1 ໃສ່ i\sqrt{839}.
z=\frac{-\sqrt{839}i+1}{4}
ຫານ -1+i\sqrt{839} ດ້ວຍ -4.
z=\frac{-\sqrt{839}i-1}{-4}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ z=\frac{-1±\sqrt{839}i}{-4} ເມື່ອ ± ເປັນລົບ. ລົບ i\sqrt{839} ອອກຈາກ -1.
z=\frac{1+\sqrt{839}i}{4}
ຫານ -1-i\sqrt{839} ດ້ວຍ -4.
z=\frac{-\sqrt{839}i+1}{4} z=\frac{1+\sqrt{839}i}{4}
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
-2z^{2}+z-105=0
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
-2z^{2}+z-105-\left(-105\right)=-\left(-105\right)
ເພີ່ມ 105 ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
-2z^{2}+z=-\left(-105\right)
ການລົບ -105 ອອກຈາກຕົວມັນເອງຈະເຫຼືອ 0.
-2z^{2}+z=105
ລົບ -105 ອອກຈາກ 0.
\frac{-2z^{2}+z}{-2}=\frac{105}{-2}
ຫານທັງສອງຂ້າງດ້ວຍ -2.
z^{2}+\frac{1}{-2}z=\frac{105}{-2}
ການຫານດ້ວຍ -2 ຈະຍົກເລີກການຄູນດ້ວຍ -2.
z^{2}-\frac{1}{2}z=\frac{105}{-2}
ຫານ 1 ດ້ວຍ -2.
z^{2}-\frac{1}{2}z=-\frac{105}{2}
ຫານ 105 ດ້ວຍ -2.
z^{2}-\frac{1}{2}z+\left(-\frac{1}{4}\right)^{2}=-\frac{105}{2}+\left(-\frac{1}{4}\right)^{2}
ຫານ -\frac{1}{2}, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ -\frac{1}{4}. ຈາກນັ້ນເພີ່ມຮາກຂອງ -\frac{1}{4} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
z^{2}-\frac{1}{2}z+\frac{1}{16}=-\frac{105}{2}+\frac{1}{16}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ -\frac{1}{4} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
z^{2}-\frac{1}{2}z+\frac{1}{16}=-\frac{839}{16}
ເພີ່ມ -\frac{105}{2} ໃສ່ \frac{1}{16} ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
\left(z-\frac{1}{4}\right)^{2}=-\frac{839}{16}
ຕົວປະກອບ z^{2}-\frac{1}{2}z+\frac{1}{16}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(z-\frac{1}{4}\right)^{2}}=\sqrt{-\frac{839}{16}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
z-\frac{1}{4}=\frac{\sqrt{839}i}{4} z-\frac{1}{4}=-\frac{\sqrt{839}i}{4}
ເຮັດໃຫ້ງ່າຍ.
z=\frac{1+\sqrt{839}i}{4} z=\frac{-\sqrt{839}i+1}{4}
ເພີ່ມ \frac{1}{4} ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}