ຕົວປະກອບ
\left(3-4x\right)\left(3x+2\right)
ປະເມີນ
6+x-12x^{2}
Graph
ແບ່ງປັນ
ສໍາເນົາຄລິບ
a+b=1 ab=-12\times 6=-72
ຕົວຫານນິພົດຕາມການຈັດກຸ່ມ. ທຳອິດນິພົດຕ້ອງຖືກຂຽນຄືນໃໝ່ເປັນ -12x^{2}+ax+bx+6. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
-1,72 -2,36 -3,24 -4,18 -6,12 -8,9
ເນື່ອງຈາກ ab ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງມີສັນຍາລັກກົງກັນຂ້າມ. ເນື່ອງຈາກ a+b ເປັນຄ່າບວກ, ຈຳນວນບວກຈຶ່ງມີຄ່າສົມບູນສູງກວ່າຈຳນວນລົບ. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ -72.
-1+72=71 -2+36=34 -3+24=21 -4+18=14 -6+12=6 -8+9=1
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=9 b=-8
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ 1.
\left(-12x^{2}+9x\right)+\left(-8x+6\right)
ຂຽນ -12x^{2}+x+6 ຄືນໃໝ່ເປັນ \left(-12x^{2}+9x\right)+\left(-8x+6\right).
3x\left(-4x+3\right)+2\left(-4x+3\right)
ຕົວຫານ 3x ໃນຕອນທຳອິດ ແລະ 2 ໃນກຸ່ມທີສອງ.
\left(-4x+3\right)\left(3x+2\right)
ແຍກຄຳທົ່ວໄປ -4x+3 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
-12x^{2}+x+6=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
x=\frac{-1±\sqrt{1^{2}-4\left(-12\right)\times 6}}{2\left(-12\right)}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-1±\sqrt{1-4\left(-12\right)\times 6}}{2\left(-12\right)}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 1.
x=\frac{-1±\sqrt{1+48\times 6}}{2\left(-12\right)}
ຄູນ -4 ໃຫ້ກັບ -12.
x=\frac{-1±\sqrt{1+288}}{2\left(-12\right)}
ຄູນ 48 ໃຫ້ກັບ 6.
x=\frac{-1±\sqrt{289}}{2\left(-12\right)}
ເພີ່ມ 1 ໃສ່ 288.
x=\frac{-1±17}{2\left(-12\right)}
ເອົາຮາກຂັ້ນສອງຂອງ 289.
x=\frac{-1±17}{-24}
ຄູນ 2 ໃຫ້ກັບ -12.
x=\frac{16}{-24}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-1±17}{-24} ເມື່ອ ± ບວກ. ເພີ່ມ -1 ໃສ່ 17.
x=-\frac{2}{3}
ຫຼຸດເສດສ່ວນ \frac{16}{-24} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 8.
x=-\frac{18}{-24}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-1±17}{-24} ເມື່ອ ± ເປັນລົບ. ລົບ 17 ອອກຈາກ -1.
x=\frac{3}{4}
ຫຼຸດເສດສ່ວນ \frac{-18}{-24} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 6.
-12x^{2}+x+6=-12\left(x-\left(-\frac{2}{3}\right)\right)\left(x-\frac{3}{4}\right)
ຫານສົມຜົນຕົ້ນສະບັບໂດຍໃຊ້ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). ແທນ -\frac{2}{3} ເປັນ x_{1} ແລະ \frac{3}{4} ເປັນ x_{2}.
-12x^{2}+x+6=-12\left(x+\frac{2}{3}\right)\left(x-\frac{3}{4}\right)
ເຮັດໃຫ້ນິພົດທັງໝົດຂອງຮູບແບບ p-\left(-q\right) ເປັນ p+q.
-12x^{2}+x+6=-12\times \frac{-3x-2}{-3}\left(x-\frac{3}{4}\right)
ເພີ່ມ \frac{2}{3} ໃສ່ x ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
-12x^{2}+x+6=-12\times \frac{-3x-2}{-3}\times \frac{-4x+3}{-4}
ລົບ \frac{3}{4} ອອກຈາກ x ໂດຍການຊອກາຕົວຫານ ແລະ ລົບຕົວເສດອອກໄປ. ຈາກນັ້ນຫຼຸດເສດສ່ວນໃຫ້ເຫຼືອໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
-12x^{2}+x+6=-12\times \frac{\left(-3x-2\right)\left(-4x+3\right)}{-3\left(-4\right)}
ຄູນ \frac{-3x-2}{-3} ກັບ \frac{-4x+3}{-4} ໂດຍການຄູນຕົວເສດຄູນຕົວເສດ ແລະ ຕົວຫານຄູນຫານ. ຈາກນັ້ນຫຼຸດເສດສ່ວນເປັນພົດທີ່ໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
-12x^{2}+x+6=-12\times \frac{\left(-3x-2\right)\left(-4x+3\right)}{12}
ຄູນ -3 ໃຫ້ກັບ -4.
-12x^{2}+x+6=-\left(-3x-2\right)\left(-4x+3\right)
ຍົກເລີກຕົວຄູນທີ່ໃຫຍ່ທີ່ສຸດ 12 ໃນ -12 ແລະ 12.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}