Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

a+b=7 ab=-\left(-10\right)=10
ເພື່ອແກ້ສົມຜົນ, ໃຫ້ຫານທາງຊ້າຍໂດຍການຈັດກຸ່ມ, ທຳອິດ, ທາງຊ້າຍຈະຕ້ອງຂຽນໃໝ່ເປັນ -x^{2}+ax+bx-10. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
1,10 2,5
ເນື່ອງຈາກ ab ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງມີສັນຍາລັກດຽວກັນ. ເນື່ອງຈາກ a+b ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງເປັນຄ່າບວກທັງຄູ່. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ 10.
1+10=11 2+5=7
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=5 b=2
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ 7.
\left(-x^{2}+5x\right)+\left(2x-10\right)
ຂຽນ -x^{2}+7x-10 ຄືນໃໝ່ເປັນ \left(-x^{2}+5x\right)+\left(2x-10\right).
-x\left(x-5\right)+2\left(x-5\right)
ຕົວຫານ -x ໃນຕອນທຳອິດ ແລະ 2 ໃນກຸ່ມທີສອງ.
\left(x-5\right)\left(-x+2\right)
ແຍກຄຳທົ່ວໄປ x-5 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
x=5 x=2
ເພື່ອຊອກຫາວິທີແກ້ສົມຜົນ, ໃຫ້ແກ້ x-5=0 ແລະ -x+2=0.
-x^{2}+7x-10=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-7±\sqrt{7^{2}-4\left(-1\right)\left(-10\right)}}{2\left(-1\right)}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ -1 ສຳລັບ a, 7 ສຳລັບ b ແລະ -10 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\left(-1\right)\left(-10\right)}}{2\left(-1\right)}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 7.
x=\frac{-7±\sqrt{49+4\left(-10\right)}}{2\left(-1\right)}
ຄູນ -4 ໃຫ້ກັບ -1.
x=\frac{-7±\sqrt{49-40}}{2\left(-1\right)}
ຄູນ 4 ໃຫ້ກັບ -10.
x=\frac{-7±\sqrt{9}}{2\left(-1\right)}
ເພີ່ມ 49 ໃສ່ -40.
x=\frac{-7±3}{2\left(-1\right)}
ເອົາຮາກຂັ້ນສອງຂອງ 9.
x=\frac{-7±3}{-2}
ຄູນ 2 ໃຫ້ກັບ -1.
x=-\frac{4}{-2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-7±3}{-2} ເມື່ອ ± ບວກ. ເພີ່ມ -7 ໃສ່ 3.
x=2
ຫານ -4 ດ້ວຍ -2.
x=-\frac{10}{-2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-7±3}{-2} ເມື່ອ ± ເປັນລົບ. ລົບ 3 ອອກຈາກ -7.
x=5
ຫານ -10 ດ້ວຍ -2.
x=2 x=5
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
-x^{2}+7x-10=0
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
-x^{2}+7x-10-\left(-10\right)=-\left(-10\right)
ເພີ່ມ 10 ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
-x^{2}+7x=-\left(-10\right)
ການລົບ -10 ອອກຈາກຕົວມັນເອງຈະເຫຼືອ 0.
-x^{2}+7x=10
ລົບ -10 ອອກຈາກ 0.
\frac{-x^{2}+7x}{-1}=\frac{10}{-1}
ຫານທັງສອງຂ້າງດ້ວຍ -1.
x^{2}+\frac{7}{-1}x=\frac{10}{-1}
ການຫານດ້ວຍ -1 ຈະຍົກເລີກການຄູນດ້ວຍ -1.
x^{2}-7x=\frac{10}{-1}
ຫານ 7 ດ້ວຍ -1.
x^{2}-7x=-10
ຫານ 10 ດ້ວຍ -1.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=-10+\left(-\frac{7}{2}\right)^{2}
ຫານ -7, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ -\frac{7}{2}. ຈາກນັ້ນເພີ່ມຮາກຂອງ -\frac{7}{2} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}-7x+\frac{49}{4}=-10+\frac{49}{4}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ -\frac{7}{2} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}-7x+\frac{49}{4}=\frac{9}{4}
ເພີ່ມ -10 ໃສ່ \frac{49}{4}.
\left(x-\frac{7}{2}\right)^{2}=\frac{9}{4}
ຕົວປະກອບ x^{2}-7x+\frac{49}{4}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x-\frac{7}{2}=\frac{3}{2} x-\frac{7}{2}=-\frac{3}{2}
ເຮັດໃຫ້ງ່າຍ.
x=5 x=2
ເພີ່ມ \frac{7}{2} ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.