ແກ້ສຳລັບ E
\left\{\begin{matrix}E=U\text{, }&\psi \neq 0\text{ and }m\neq 0\\E\in \mathrm{R}\text{, }&\psi =0\text{ and }m\neq 0\end{matrix}\right,
ແກ້ສຳລັບ U
\left\{\begin{matrix}U=E\text{, }&\psi \neq 0\text{ and }m\neq 0\\U\in \mathrm{R}\text{, }&\psi =0\text{ and }m\neq 0\end{matrix}\right,
ແບ່ງປັນ
ສໍາເນົາຄລິບ
\left(-\frac{ℏ^{2}}{2m}\right)\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}\times 2m+U\psi \times 2m=E\psi \times 2m
ຄູນທັງສອງຂ້າງຂອງສົມຜົນດ້ວຍ 2m.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{2m}\times 2m+U\psi \times 2m=E\psi \times 2m
ສະແດງ \left(-\frac{ℏ^{2}}{2m}\right)\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}} ເປັນໜຶ່ງເສດສ່ວນ.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}\times 2}{2m}m+U\psi \times 2m=E\psi \times 2m
ສະແດງ \frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{2m}\times 2 ເປັນໜຶ່ງເສດສ່ວນ.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{m}m+U\psi \times 2m=E\psi \times 2m
ຍົກເລີກ 2 ທັງໃນຕົວເສດ ແລະ ຕົວຫານ.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}m}{m}+U\psi \times 2m=E\psi \times 2m
ສະແດງ \frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{m}m ເປັນໜຶ່ງເສດສ່ວນ.
-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}+U\psi \times 2m=E\psi \times 2m
ຍົກເລີກ m ທັງໃນຕົວເສດ ແລະ ຕົວຫານ.
E\psi \times 2m=-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}+U\psi \times 2m
ສະຫຼັບຂ້າງເພື່ອໃຫ້ພົດຕົວແປທັງໝົດຢູ່ຂ້າງຊ້າຍຂອງເຄື່ອງໝາຍເທົ່າກັບ.
2m\psi E=2Um\psi
ສົມຜົນຢູ່ໃນຮູບແບບມາດຕະຖານ.
\frac{2m\psi E}{2m\psi }=\frac{2Um\psi }{2m\psi }
ຫານທັງສອງຂ້າງດ້ວຍ 2\psi m.
E=\frac{2Um\psi }{2m\psi }
ການຫານດ້ວຍ 2\psi m ຈະຍົກເລີກການຄູນດ້ວຍ 2\psi m.
E=U
ຫານ 2U\psi m ດ້ວຍ 2\psi m.
\left(-\frac{ℏ^{2}}{2m}\right)\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}\times 2m+U\psi \times 2m=E\psi \times 2m
ຄູນທັງສອງຂ້າງຂອງສົມຜົນດ້ວຍ 2m.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{2m}\times 2m+U\psi \times 2m=E\psi \times 2m
ສະແດງ \left(-\frac{ℏ^{2}}{2m}\right)\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}} ເປັນໜຶ່ງເສດສ່ວນ.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}\times 2}{2m}m+U\psi \times 2m=E\psi \times 2m
ສະແດງ \frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{2m}\times 2 ເປັນໜຶ່ງເສດສ່ວນ.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{m}m+U\psi \times 2m=E\psi \times 2m
ຍົກເລີກ 2 ທັງໃນຕົວເສດ ແລະ ຕົວຫານ.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}m}{m}+U\psi \times 2m=E\psi \times 2m
ສະແດງ \frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{m}m ເປັນໜຶ່ງເສດສ່ວນ.
-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}+U\psi \times 2m=E\psi \times 2m
ຍົກເລີກ m ທັງໃນຕົວເສດ ແລະ ຕົວຫານ.
U\psi \times 2m=E\psi \times 2m+ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}
ເພີ່ມ ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}} ໃສ່ທັງສອງດ້ານ.
2m\psi U=2Em\psi
ສົມຜົນຢູ່ໃນຮູບແບບມາດຕະຖານ.
\frac{2m\psi U}{2m\psi }=\frac{2Em\psi }{2m\psi }
ຫານທັງສອງຂ້າງດ້ວຍ 2\psi m.
U=\frac{2Em\psi }{2m\psi }
ການຫານດ້ວຍ 2\psi m ຈະຍົກເລີກການຄູນດ້ວຍ 2\psi m.
U=E
ຫານ 2E\psi m ດ້ວຍ 2\psi m.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}