Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

2x^{2}-5x+2=5
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ x-2 ດ້ວຍ 2x-1 ແລ້ວຮວມຄຳທີ່ຄ້າຍກັນ.
2x^{2}-5x+2-5=0
ລົບ 5 ອອກຈາກທັງສອງຂ້າງ.
2x^{2}-5x-3=0
ລົບ 5 ອອກຈາກ 2 ເພື່ອໃຫ້ໄດ້ -3.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 2\left(-3\right)}}{2\times 2}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 2 ສຳລັບ a, -5 ສຳລັບ b ແລະ -3 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 2\left(-3\right)}}{2\times 2}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -5.
x=\frac{-\left(-5\right)±\sqrt{25-8\left(-3\right)}}{2\times 2}
ຄູນ -4 ໃຫ້ກັບ 2.
x=\frac{-\left(-5\right)±\sqrt{25+24}}{2\times 2}
ຄູນ -8 ໃຫ້ກັບ -3.
x=\frac{-\left(-5\right)±\sqrt{49}}{2\times 2}
ເພີ່ມ 25 ໃສ່ 24.
x=\frac{-\left(-5\right)±7}{2\times 2}
ເອົາຮາກຂັ້ນສອງຂອງ 49.
x=\frac{5±7}{2\times 2}
ຈຳນວນກົງກັນຂ້າມຂອງ -5 ແມ່ນ 5.
x=\frac{5±7}{4}
ຄູນ 2 ໃຫ້ກັບ 2.
x=\frac{12}{4}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{5±7}{4} ເມື່ອ ± ບວກ. ເພີ່ມ 5 ໃສ່ 7.
x=3
ຫານ 12 ດ້ວຍ 4.
x=-\frac{2}{4}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{5±7}{4} ເມື່ອ ± ເປັນລົບ. ລົບ 7 ອອກຈາກ 5.
x=-\frac{1}{2}
ຫຼຸດເສດສ່ວນ \frac{-2}{4} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 2.
x=3 x=-\frac{1}{2}
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
2x^{2}-5x+2=5
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ x-2 ດ້ວຍ 2x-1 ແລ້ວຮວມຄຳທີ່ຄ້າຍກັນ.
2x^{2}-5x=5-2
ລົບ 2 ອອກຈາກທັງສອງຂ້າງ.
2x^{2}-5x=3
ລົບ 2 ອອກຈາກ 5 ເພື່ອໃຫ້ໄດ້ 3.
\frac{2x^{2}-5x}{2}=\frac{3}{2}
ຫານທັງສອງຂ້າງດ້ວຍ 2.
x^{2}-\frac{5}{2}x=\frac{3}{2}
ການຫານດ້ວຍ 2 ຈະຍົກເລີກການຄູນດ້ວຍ 2.
x^{2}-\frac{5}{2}x+\left(-\frac{5}{4}\right)^{2}=\frac{3}{2}+\left(-\frac{5}{4}\right)^{2}
ຫານ -\frac{5}{2}, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ -\frac{5}{4}. ຈາກນັ້ນເພີ່ມຮາກຂອງ -\frac{5}{4} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{3}{2}+\frac{25}{16}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ -\frac{5}{4} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{49}{16}
ເພີ່ມ \frac{3}{2} ໃສ່ \frac{25}{16} ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
\left(x-\frac{5}{4}\right)^{2}=\frac{49}{16}
ຕົວປະກອບ x^{2}-\frac{5}{2}x+\frac{25}{16}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x-\frac{5}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x-\frac{5}{4}=\frac{7}{4} x-\frac{5}{4}=-\frac{7}{4}
ເຮັດໃຫ້ງ່າຍ.
x=3 x=-\frac{1}{2}
ເພີ່ມ \frac{5}{4} ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.