Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

x+x=10x^{2}
x ແປຫຼາກຫຼາຍຈະຕ້ອງບໍ່ເທົ່າກັບ 0 ເນື່ອງຈາກບໍ່ໄດ້ລະບຸການຫານດ້ວຍສູນ. ຄູນທັງສອງຂ້າງຂອງສົມຜົນດ້ວຍ 2x^{2}.
2x=10x^{2}
ຮວມ x ແລະ x ເພື່ອຮັບ 2x.
2x-10x^{2}=0
ລົບ 10x^{2} ອອກຈາກທັງສອງຂ້າງ.
x\left(2-10x\right)=0
ຕົວປະກອບຈາກ x.
x=0 x=\frac{1}{5}
ເພື່ອຊອກຫາວິທີແກ້ສົມຜົນ, ໃຫ້ແກ້ x=0 ແລະ 2-10x=0.
x=\frac{1}{5}
x ແບບຫຼາກຫຼາຍບໍ່ສາມາດເທົ່າກັບ 0 ໄດ້.
x+x=10x^{2}
x ແປຫຼາກຫຼາຍຈະຕ້ອງບໍ່ເທົ່າກັບ 0 ເນື່ອງຈາກບໍ່ໄດ້ລະບຸການຫານດ້ວຍສູນ. ຄູນທັງສອງຂ້າງຂອງສົມຜົນດ້ວຍ 2x^{2}.
2x=10x^{2}
ຮວມ x ແລະ x ເພື່ອຮັບ 2x.
2x-10x^{2}=0
ລົບ 10x^{2} ອອກຈາກທັງສອງຂ້າງ.
-10x^{2}+2x=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-2±\sqrt{2^{2}}}{2\left(-10\right)}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ -10 ສຳລັບ a, 2 ສຳລັບ b ແລະ 0 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±2}{2\left(-10\right)}
ເອົາຮາກຂັ້ນສອງຂອງ 2^{2}.
x=\frac{-2±2}{-20}
ຄູນ 2 ໃຫ້ກັບ -10.
x=\frac{0}{-20}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-2±2}{-20} ເມື່ອ ± ບວກ. ເພີ່ມ -2 ໃສ່ 2.
x=0
ຫານ 0 ດ້ວຍ -20.
x=-\frac{4}{-20}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-2±2}{-20} ເມື່ອ ± ເປັນລົບ. ລົບ 2 ອອກຈາກ -2.
x=\frac{1}{5}
ຫຼຸດເສດສ່ວນ \frac{-4}{-20} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 4.
x=0 x=\frac{1}{5}
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
x=\frac{1}{5}
x ແບບຫຼາກຫຼາຍບໍ່ສາມາດເທົ່າກັບ 0 ໄດ້.
x+x=10x^{2}
x ແປຫຼາກຫຼາຍຈະຕ້ອງບໍ່ເທົ່າກັບ 0 ເນື່ອງຈາກບໍ່ໄດ້ລະບຸການຫານດ້ວຍສູນ. ຄູນທັງສອງຂ້າງຂອງສົມຜົນດ້ວຍ 2x^{2}.
2x=10x^{2}
ຮວມ x ແລະ x ເພື່ອຮັບ 2x.
2x-10x^{2}=0
ລົບ 10x^{2} ອອກຈາກທັງສອງຂ້າງ.
-10x^{2}+2x=0
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
\frac{-10x^{2}+2x}{-10}=\frac{0}{-10}
ຫານທັງສອງຂ້າງດ້ວຍ -10.
x^{2}+\frac{2}{-10}x=\frac{0}{-10}
ການຫານດ້ວຍ -10 ຈະຍົກເລີກການຄູນດ້ວຍ -10.
x^{2}-\frac{1}{5}x=\frac{0}{-10}
ຫຼຸດເສດສ່ວນ \frac{2}{-10} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 2.
x^{2}-\frac{1}{5}x=0
ຫານ 0 ດ້ວຍ -10.
x^{2}-\frac{1}{5}x+\left(-\frac{1}{10}\right)^{2}=\left(-\frac{1}{10}\right)^{2}
ຫານ -\frac{1}{5}, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ -\frac{1}{10}. ຈາກນັ້ນເພີ່ມຮາກຂອງ -\frac{1}{10} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}-\frac{1}{5}x+\frac{1}{100}=\frac{1}{100}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ -\frac{1}{10} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
\left(x-\frac{1}{10}\right)^{2}=\frac{1}{100}
ຕົວປະກອບ x^{2}-\frac{1}{5}x+\frac{1}{100}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x-\frac{1}{10}\right)^{2}}=\sqrt{\frac{1}{100}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x-\frac{1}{10}=\frac{1}{10} x-\frac{1}{10}=-\frac{1}{10}
ເຮັດໃຫ້ງ່າຍ.
x=\frac{1}{5} x=0
ເພີ່ມ \frac{1}{10} ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
x=\frac{1}{5}
x ແບບຫຼາກຫຼາຍບໍ່ສາມາດເທົ່າກັບ 0 ໄດ້.