Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

\left(1800-600x\right)x=50
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ 90-30x ດ້ວຍ 20.
1800x-600x^{2}=50
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ 1800-600x ດ້ວຍ x.
1800x-600x^{2}-50=0
ລົບ 50 ອອກຈາກທັງສອງຂ້າງ.
-600x^{2}+1800x-50=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-1800±\sqrt{1800^{2}-4\left(-600\right)\left(-50\right)}}{2\left(-600\right)}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ -600 ສຳລັບ a, 1800 ສຳລັບ b ແລະ -50 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1800±\sqrt{3240000-4\left(-600\right)\left(-50\right)}}{2\left(-600\right)}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 1800.
x=\frac{-1800±\sqrt{3240000+2400\left(-50\right)}}{2\left(-600\right)}
ຄູນ -4 ໃຫ້ກັບ -600.
x=\frac{-1800±\sqrt{3240000-120000}}{2\left(-600\right)}
ຄູນ 2400 ໃຫ້ກັບ -50.
x=\frac{-1800±\sqrt{3120000}}{2\left(-600\right)}
ເພີ່ມ 3240000 ໃສ່ -120000.
x=\frac{-1800±200\sqrt{78}}{2\left(-600\right)}
ເອົາຮາກຂັ້ນສອງຂອງ 3120000.
x=\frac{-1800±200\sqrt{78}}{-1200}
ຄູນ 2 ໃຫ້ກັບ -600.
x=\frac{200\sqrt{78}-1800}{-1200}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-1800±200\sqrt{78}}{-1200} ເມື່ອ ± ບວກ. ເພີ່ມ -1800 ໃສ່ 200\sqrt{78}.
x=-\frac{\sqrt{78}}{6}+\frac{3}{2}
ຫານ -1800+200\sqrt{78} ດ້ວຍ -1200.
x=\frac{-200\sqrt{78}-1800}{-1200}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-1800±200\sqrt{78}}{-1200} ເມື່ອ ± ເປັນລົບ. ລົບ 200\sqrt{78} ອອກຈາກ -1800.
x=\frac{\sqrt{78}}{6}+\frac{3}{2}
ຫານ -1800-200\sqrt{78} ດ້ວຍ -1200.
x=-\frac{\sqrt{78}}{6}+\frac{3}{2} x=\frac{\sqrt{78}}{6}+\frac{3}{2}
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
\left(1800-600x\right)x=50
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ 90-30x ດ້ວຍ 20.
1800x-600x^{2}=50
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ 1800-600x ດ້ວຍ x.
-600x^{2}+1800x=50
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
\frac{-600x^{2}+1800x}{-600}=\frac{50}{-600}
ຫານທັງສອງຂ້າງດ້ວຍ -600.
x^{2}+\frac{1800}{-600}x=\frac{50}{-600}
ການຫານດ້ວຍ -600 ຈະຍົກເລີກການຄູນດ້ວຍ -600.
x^{2}-3x=\frac{50}{-600}
ຫານ 1800 ດ້ວຍ -600.
x^{2}-3x=-\frac{1}{12}
ຫຼຸດເສດສ່ວນ \frac{50}{-600} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 50.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-\frac{1}{12}+\left(-\frac{3}{2}\right)^{2}
ຫານ -3, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ -\frac{3}{2}. ຈາກນັ້ນເພີ່ມຮາກຂອງ -\frac{3}{2} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}-3x+\frac{9}{4}=-\frac{1}{12}+\frac{9}{4}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ -\frac{3}{2} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}-3x+\frac{9}{4}=\frac{13}{6}
ເພີ່ມ -\frac{1}{12} ໃສ່ \frac{9}{4} ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
\left(x-\frac{3}{2}\right)^{2}=\frac{13}{6}
ຕົວປະກອບ x^{2}-3x+\frac{9}{4}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{13}{6}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x-\frac{3}{2}=\frac{\sqrt{78}}{6} x-\frac{3}{2}=-\frac{\sqrt{78}}{6}
ເຮັດໃຫ້ງ່າຍ.
x=\frac{\sqrt{78}}{6}+\frac{3}{2} x=-\frac{\sqrt{78}}{6}+\frac{3}{2}
ເພີ່ມ \frac{3}{2} ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.