Skip ໄປຫາເນື້ອຫາຫຼັກ
ປະເມີນ
Tick mark Image
ຂະຫຍາຍ
Tick mark Image

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

\left(x-\left(-6-i\right)\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
ຄູນ x-\left(-1+3i\right) ກັບ x-\left(-1+3i\right) ເພື່ອໃຫ້ໄດ້ \left(x-\left(-1+3i\right)\right)^{2}.
\left(x+\left(6+i\right)\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
ຈຳນວນກົງກັນຂ້າມຂອງ -6-i ແມ່ນ 6+i.
\left(x\left(x-\left(-6+i\right)\right)+\left(6+i\right)\left(x-\left(-6+i\right)\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ x+\left(6+i\right) ດ້ວຍ x-\left(-6+i\right).
x\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ x\left(x-\left(-6+i\right)\right)+\left(6+i\right)\left(x-\left(-6+i\right)\right) ດ້ວຍ \left(x-\left(-1+3i\right)\right)^{2}.
x\left(x+\left(6-i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
ຄູນ -1 ກັບ -6+i ເພື່ອໃຫ້ໄດ້ 6-i.
x\left(x+\left(6-i\right)\right)\left(x+\left(1-3i\right)\right)^{2}+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
ຄູນ -1 ກັບ -1+3i ເພື່ອໃຫ້ໄດ້ 1-3i.
x\left(x+\left(6-i\right)\right)\left(x^{2}+\left(2-6i\right)x+\left(-8-6i\right)\right)+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
ໃຊ້ທິດສະດີທະວິນາມ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ເພື່ອຂະຫຍາຍ \left(x+\left(1-3i\right)\right)^{2}.
\left(x^{2}+\left(6-i\right)x\right)\left(x^{2}+\left(2-6i\right)x+\left(-8-6i\right)\right)+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ x ດ້ວຍ x+\left(6-i\right).
x^{4}+\left(2-6i\right)x^{3}+\left(-8-6i\right)x^{2}+\left(6-i\right)x^{3}+\left(6-38i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
ນຳໃຊ້ຄຸນສົມບັດການແຈກຢາຍໂດຍການຄູນແຕ່ລະ x^{2}+\left(6-i\right)x ດ້ວຍ x^{2}+\left(2-6i\right)x+\left(-8-6i\right).
x^{4}+\left(8-7i\right)x^{3}+\left(-8-6i\right)x^{2}+\left(6-38i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
ຮວມ \left(2-6i\right)x^{3} ແລະ \left(6-i\right)x^{3} ເພື່ອຮັບ \left(8-7i\right)x^{3}.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
ຮວມ \left(-8-6i\right)x^{2} ແລະ \left(6-38i\right)x^{2} ເພື່ອຮັບ \left(-2-44i\right)x^{2}.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x+\left(6-i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
ຄູນ -1 ກັບ -6+i ເພື່ອໃຫ້ໄດ້ 6-i.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x+\left(6-i\right)\right)\left(x+\left(1-3i\right)\right)^{2}
ຄູນ -1 ກັບ -1+3i ເພື່ອໃຫ້ໄດ້ 1-3i.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x+\left(6-i\right)\right)\left(x^{2}+\left(2-6i\right)x+\left(-8-6i\right)\right)
ໃຊ້ທິດສະດີທະວິນາມ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ເພື່ອຂະຫຍາຍ \left(x+\left(1-3i\right)\right)^{2}.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(\left(6+i\right)x+37\right)\left(x^{2}+\left(2-6i\right)x+\left(-8-6i\right)\right)
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ 6+i ດ້ວຍ x+\left(6-i\right).
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)x^{3}+\left(18-34i\right)x^{2}+\left(-42-44i\right)x+37x^{2}+\left(74-222i\right)x+\left(-296-222i\right)
ນຳໃຊ້ຄຸນສົມບັດການແຈກຢາຍໂດຍການຄູນແຕ່ລະ \left(6+i\right)x+37 ດ້ວຍ x^{2}+\left(2-6i\right)x+\left(-8-6i\right).
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)x^{3}+\left(55-34i\right)x^{2}+\left(-42-44i\right)x+\left(74-222i\right)x+\left(-296-222i\right)
ຮວມ \left(18-34i\right)x^{2} ແລະ 37x^{2} ເພື່ອຮັບ \left(55-34i\right)x^{2}.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)x^{3}+\left(55-34i\right)x^{2}+\left(32-266i\right)x+\left(-296-222i\right)
ຮວມ \left(-42-44i\right)x ແລະ \left(74-222i\right)x ເພື່ອຮັບ \left(32-266i\right)x.
x^{4}+\left(14-6i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(55-34i\right)x^{2}+\left(32-266i\right)x+\left(-296-222i\right)
ຮວມ \left(8-7i\right)x^{3} ແລະ \left(6+i\right)x^{3} ເພື່ອຮັບ \left(14-6i\right)x^{3}.
x^{4}+\left(14-6i\right)x^{3}+\left(53-78i\right)x^{2}+\left(-54-28i\right)x+\left(32-266i\right)x+\left(-296-222i\right)
ຮວມ \left(-2-44i\right)x^{2} ແລະ \left(55-34i\right)x^{2} ເພື່ອຮັບ \left(53-78i\right)x^{2}.
x^{4}+\left(14-6i\right)x^{3}+\left(53-78i\right)x^{2}+\left(-22-294i\right)x+\left(-296-222i\right)
ຮວມ \left(-54-28i\right)x ແລະ \left(32-266i\right)x ເພື່ອຮັບ \left(-22-294i\right)x.
\left(x-\left(-6-i\right)\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
ຄູນ x-\left(-1+3i\right) ກັບ x-\left(-1+3i\right) ເພື່ອໃຫ້ໄດ້ \left(x-\left(-1+3i\right)\right)^{2}.
\left(x+\left(6+i\right)\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
ຈຳນວນກົງກັນຂ້າມຂອງ -6-i ແມ່ນ 6+i.
\left(x\left(x-\left(-6+i\right)\right)+\left(6+i\right)\left(x-\left(-6+i\right)\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ x+\left(6+i\right) ດ້ວຍ x-\left(-6+i\right).
x\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ x\left(x-\left(-6+i\right)\right)+\left(6+i\right)\left(x-\left(-6+i\right)\right) ດ້ວຍ \left(x-\left(-1+3i\right)\right)^{2}.
x\left(x+\left(6-i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
ຄູນ -1 ກັບ -6+i ເພື່ອໃຫ້ໄດ້ 6-i.
x\left(x+\left(6-i\right)\right)\left(x+\left(1-3i\right)\right)^{2}+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
ຄູນ -1 ກັບ -1+3i ເພື່ອໃຫ້ໄດ້ 1-3i.
x\left(x+\left(6-i\right)\right)\left(x^{2}+\left(2-6i\right)x+\left(-8-6i\right)\right)+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
ໃຊ້ທິດສະດີທະວິນາມ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ເພື່ອຂະຫຍາຍ \left(x+\left(1-3i\right)\right)^{2}.
\left(x^{2}+\left(6-i\right)x\right)\left(x^{2}+\left(2-6i\right)x+\left(-8-6i\right)\right)+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ x ດ້ວຍ x+\left(6-i\right).
x^{4}+\left(2-6i\right)x^{3}+\left(-8-6i\right)x^{2}+\left(6-i\right)x^{3}+\left(6-38i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
ນຳໃຊ້ຄຸນສົມບັດການແຈກຢາຍໂດຍການຄູນແຕ່ລະ x^{2}+\left(6-i\right)x ດ້ວຍ x^{2}+\left(2-6i\right)x+\left(-8-6i\right).
x^{4}+\left(8-7i\right)x^{3}+\left(-8-6i\right)x^{2}+\left(6-38i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
ຮວມ \left(2-6i\right)x^{3} ແລະ \left(6-i\right)x^{3} ເພື່ອຮັບ \left(8-7i\right)x^{3}.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
ຮວມ \left(-8-6i\right)x^{2} ແລະ \left(6-38i\right)x^{2} ເພື່ອຮັບ \left(-2-44i\right)x^{2}.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x+\left(6-i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
ຄູນ -1 ກັບ -6+i ເພື່ອໃຫ້ໄດ້ 6-i.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x+\left(6-i\right)\right)\left(x+\left(1-3i\right)\right)^{2}
ຄູນ -1 ກັບ -1+3i ເພື່ອໃຫ້ໄດ້ 1-3i.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x+\left(6-i\right)\right)\left(x^{2}+\left(2-6i\right)x+\left(-8-6i\right)\right)
ໃຊ້ທິດສະດີທະວິນາມ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ເພື່ອຂະຫຍາຍ \left(x+\left(1-3i\right)\right)^{2}.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(\left(6+i\right)x+37\right)\left(x^{2}+\left(2-6i\right)x+\left(-8-6i\right)\right)
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ 6+i ດ້ວຍ x+\left(6-i\right).
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)x^{3}+\left(18-34i\right)x^{2}+\left(-42-44i\right)x+37x^{2}+\left(74-222i\right)x+\left(-296-222i\right)
ນຳໃຊ້ຄຸນສົມບັດການແຈກຢາຍໂດຍການຄູນແຕ່ລະ \left(6+i\right)x+37 ດ້ວຍ x^{2}+\left(2-6i\right)x+\left(-8-6i\right).
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)x^{3}+\left(55-34i\right)x^{2}+\left(-42-44i\right)x+\left(74-222i\right)x+\left(-296-222i\right)
ຮວມ \left(18-34i\right)x^{2} ແລະ 37x^{2} ເພື່ອຮັບ \left(55-34i\right)x^{2}.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)x^{3}+\left(55-34i\right)x^{2}+\left(32-266i\right)x+\left(-296-222i\right)
ຮວມ \left(-42-44i\right)x ແລະ \left(74-222i\right)x ເພື່ອຮັບ \left(32-266i\right)x.
x^{4}+\left(14-6i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(55-34i\right)x^{2}+\left(32-266i\right)x+\left(-296-222i\right)
ຮວມ \left(8-7i\right)x^{3} ແລະ \left(6+i\right)x^{3} ເພື່ອຮັບ \left(14-6i\right)x^{3}.
x^{4}+\left(14-6i\right)x^{3}+\left(53-78i\right)x^{2}+\left(-54-28i\right)x+\left(32-266i\right)x+\left(-296-222i\right)
ຮວມ \left(-2-44i\right)x^{2} ແລະ \left(55-34i\right)x^{2} ເພື່ອຮັບ \left(53-78i\right)x^{2}.
x^{4}+\left(14-6i\right)x^{3}+\left(53-78i\right)x^{2}+\left(-22-294i\right)x+\left(-296-222i\right)
ຮວມ \left(-54-28i\right)x ແລະ \left(32-266i\right)x ເພື່ອຮັບ \left(-22-294i\right)x.