ປະເມີນ
\frac{\left(3x^{2}-1\right)^{2}}{9}
ຕົວປະກອບ
\frac{\left(3x^{2}-1\right)^{2}}{9}
Graph
ແບ່ງປັນ
ສໍາເນົາຄລິບ
\left(x^{2}+\frac{2x\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+\frac{1}{3}\right)\left(x^{2}-\frac{2x}{\sqrt{3}}+\frac{1}{3}\right)
ໃຊ້ເຫດຜົນຕັດສິນຕົວຫານຂອງ \frac{2x}{\sqrt{3}} ໂດຍການຫານຕົວເສດ ແລະ ຕົວຫານໂດຍ \sqrt{3}.
\left(x^{2}+\frac{2x\sqrt{3}}{3}+\frac{1}{3}\right)\left(x^{2}-\frac{2x}{\sqrt{3}}+\frac{1}{3}\right)
ຮາກຂອງ \sqrt{3} ແມ່ນ 3.
\left(x^{2}+\frac{2x\sqrt{3}+1}{3}\right)\left(x^{2}-\frac{2x}{\sqrt{3}}+\frac{1}{3}\right)
ເນື່ອງຈາກ \frac{2x\sqrt{3}}{3} ແລະ \frac{1}{3} ມີຕົວຫານດຽວກັນ, ໃຫ້ເພີ່ມພວກມັນໂດຍການເພີ່ມຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\left(x^{2}+\frac{2x\sqrt{3}+1}{3}\right)\left(x^{2}-\frac{2x\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+\frac{1}{3}\right)
ໃຊ້ເຫດຜົນຕັດສິນຕົວຫານຂອງ \frac{2x}{\sqrt{3}} ໂດຍການຫານຕົວເສດ ແລະ ຕົວຫານໂດຍ \sqrt{3}.
\left(x^{2}+\frac{2x\sqrt{3}+1}{3}\right)\left(x^{2}-\frac{2x\sqrt{3}}{3}+\frac{1}{3}\right)
ຮາກຂອງ \sqrt{3} ແມ່ນ 3.
\left(x^{2}+\frac{2x\sqrt{3}+1}{3}\right)\left(x^{2}+\frac{2x\sqrt{3}+1}{3}\right)
ເນື່ອງຈາກ \frac{2x\sqrt{3}}{3} ແລະ \frac{1}{3} ມີຕົວຫານດຽວກັນ, ໃຫ້ເພີ່ມພວກມັນໂດຍການເພີ່ມຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\left(x^{2}+\frac{2x\sqrt{3}+1}{3}\right)^{2}
ຄູນ x^{2}+\frac{2x\sqrt{3}+1}{3} ກັບ x^{2}+\frac{2x\sqrt{3}+1}{3} ເພື່ອໃຫ້ໄດ້ \left(x^{2}+\frac{2x\sqrt{3}+1}{3}\right)^{2}.
\left(\frac{3x^{2}}{3}+\frac{2x\sqrt{3}+1}{3}\right)^{2}
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຄູນ x^{2} ໃຫ້ກັບ \frac{3}{3}.
\left(\frac{3x^{2}+2x\sqrt{3}+1}{3}\right)^{2}
ເນື່ອງຈາກ \frac{3x^{2}}{3} ແລະ \frac{2x\sqrt{3}+1}{3} ມີຕົວຫານດຽວກັນ, ໃຫ້ເພີ່ມພວກມັນໂດຍການເພີ່ມຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{\left(3x^{2}+2x\sqrt{3}+1\right)^{2}}{3^{2}}
ເພື່ອຍົກກຳລັງ \frac{3x^{2}+2x\sqrt{3}+1}{3}, ໃຫ້ຍົກຕົວຄູນທັງສອງ ແລະ ຕົວຫານໃຫ້ການຍົກກຳລັງ ແລ້ວຫານ.
\frac{9x^{4}+12\sqrt{3}x^{3}+4\left(\sqrt{3}\right)^{2}x^{2}+6x^{2}+4\sqrt{3}x+1}{3^{2}}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 3x^{2}+2x\sqrt{3}+1.
\frac{9x^{4}+12\sqrt{3}x^{3}+4\times 3x^{2}+6x^{2}+4\sqrt{3}x+1}{3^{2}}
ຮາກຂອງ \sqrt{3} ແມ່ນ 3.
\frac{9x^{4}+12\sqrt{3}x^{3}+12x^{2}+6x^{2}+4\sqrt{3}x+1}{3^{2}}
ຄູນ 4 ກັບ 3 ເພື່ອໃຫ້ໄດ້ 12.
\frac{9x^{4}+12\sqrt{3}x^{3}+18x^{2}+4\sqrt{3}x+1}{3^{2}}
ຮວມ 12x^{2} ແລະ 6x^{2} ເພື່ອຮັບ 18x^{2}.
\frac{9x^{4}+12\sqrt{3}x^{3}+18x^{2}+4\sqrt{3}x+1}{9}
ຄຳນວນ 3 ກຳລັງ 2 ແລະ ໄດ້ 9.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}