Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x (complex solution)
Tick mark Image
ແກ້ສຳລັບ x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

x^{3}+3x^{2}+3x+28=0
ຂະຫຍາຍນິພົດ.
±28,±14,±7,±4,±2,±1
ຂໍ້ພິສູດທາງວິທະຍາສາດຮາກແບບມີເຫດຜົນ, ຮາກເຫດຜົນທັງໝົດຂອງພະຫຸນາມໃດໜຶ່ງແມ່ນຢູ່ໃນຮູບແບບ \frac{p}{q}, ເຊິ່ງ p ຫານໃຫ້ຄ່າຄົງທີ່ 28 ແລະ q ຫານໃຫ້ຄ່າສຳປະສິດນຳໜ້າ 1. ລາຍຊື່ຜູ້ຄັດເລືອກທັງໝົດ \frac{p}{q}.
x=-4
ຊອກຫາຮາກໂດຍການລອງໃຊ້ຄ່າຈຳນວນເຕັມທັງໝົດ, ເລີ່ມຕົ້ນຈາກທີ່ນ້ອຍທີີ່ສຸດຕາມຄ່າແນ່ນອນ. ຫາກບໍ່ພົບຮາກຈຳນວນເຕັມ, ໃຫ້ລອງໃຊ້ການຫານ.
x^{2}-x+7=0
ຕາມຂໍ້ພິສູດທາງຄະນິດສາດປັດໃຈ, x-k ເປັນປັດໃຈຂອງພະຫຸນາມສຳລັບແຕ່ລະຮາກ k. ຫານ x^{3}+3x^{2}+3x+28 ດ້ວຍ x+4 ເພື່ອໄດ້ x^{2}-x+7. ແກ້ໄຂສົມຜົນທີ່ຜົນເທົ່າກັບ 0.
x=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 1\times 7}}{2}
ສົມຜົນທັງໝົດຈາກແບບຟອມ ax^{2}+bx+c=0 ສາມາດແກ້ໄຂໄດ້ໂດຍໃຊ້ສູດຄຳນວນກຳລັງສອງ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ແທນ 1 ໃຫ້ a, -1 ໃຫ້ b ແລະ 7 ໃຫ້ c ໃນສູດຄຳນວນກຳລັງສອງ.
x=\frac{1±\sqrt{-27}}{2}
ເລີ່ມຄຳນວນ.
x=\frac{-3i\sqrt{3}+1}{2} x=\frac{1+3i\sqrt{3}}{2}
ແກ້ສົມຜົນ x^{2}-x+7=0 ເມື່ອ ± ເປັນບວກ ແລະ ± ເປັນລົບ.
x=-4 x=\frac{-3i\sqrt{3}+1}{2} x=\frac{1+3i\sqrt{3}}{2}
ລາຍຊື່ຂອງວິທີແກ້ໄຂທັງໝົດທີ່ພົບ.
x^{3}+3x^{2}+3x+28=0
ຂະຫຍາຍນິພົດ.
±28,±14,±7,±4,±2,±1
ຂໍ້ພິສູດທາງວິທະຍາສາດຮາກແບບມີເຫດຜົນ, ຮາກເຫດຜົນທັງໝົດຂອງພະຫຸນາມໃດໜຶ່ງແມ່ນຢູ່ໃນຮູບແບບ \frac{p}{q}, ເຊິ່ງ p ຫານໃຫ້ຄ່າຄົງທີ່ 28 ແລະ q ຫານໃຫ້ຄ່າສຳປະສິດນຳໜ້າ 1. ລາຍຊື່ຜູ້ຄັດເລືອກທັງໝົດ \frac{p}{q}.
x=-4
ຊອກຫາຮາກໂດຍການລອງໃຊ້ຄ່າຈຳນວນເຕັມທັງໝົດ, ເລີ່ມຕົ້ນຈາກທີ່ນ້ອຍທີີ່ສຸດຕາມຄ່າແນ່ນອນ. ຫາກບໍ່ພົບຮາກຈຳນວນເຕັມ, ໃຫ້ລອງໃຊ້ການຫານ.
x^{2}-x+7=0
ຕາມຂໍ້ພິສູດທາງຄະນິດສາດປັດໃຈ, x-k ເປັນປັດໃຈຂອງພະຫຸນາມສຳລັບແຕ່ລະຮາກ k. ຫານ x^{3}+3x^{2}+3x+28 ດ້ວຍ x+4 ເພື່ອໄດ້ x^{2}-x+7. ແກ້ໄຂສົມຜົນທີ່ຜົນເທົ່າກັບ 0.
x=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 1\times 7}}{2}
ສົມຜົນທັງໝົດຈາກແບບຟອມ ax^{2}+bx+c=0 ສາມາດແກ້ໄຂໄດ້ໂດຍໃຊ້ສູດຄຳນວນກຳລັງສອງ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ແທນ 1 ໃຫ້ a, -1 ໃຫ້ b ແລະ 7 ໃຫ້ c ໃນສູດຄຳນວນກຳລັງສອງ.
x=\frac{1±\sqrt{-27}}{2}
ເລີ່ມຄຳນວນ.
x\in \emptyset
ເນື່ອງຈາກຮາກຂອງຈຳນວນລົບບໍ່ໄດ້ຖືກລະບຸໄວ້ໃນຊ່ອງຂໍ້ມູນຈິງ, ຈຶ່ງບໍ່ມີຄຳຕອບ.
x=-4
ລາຍຊື່ຂອງວິທີແກ້ໄຂທັງໝົດທີ່ພົບ.