Skip ໄປຫາເນື້ອຫາຫຼັກ
ປະເມີນ
Tick mark Image
ບອກຄວາມແຕກຕ່າງ w.r.t. x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

36^{-\frac{1}{2}}\left(x^{-4}\right)^{-\frac{1}{2}}
ຂະຫຍາຍ \left(36x^{-4}\right)^{-\frac{1}{2}}.
36^{-\frac{1}{2}}x^{2}
ເພື່ອຍົກເລກກຳລັງໃຫ້ສູງຂຶ້ນ, ໃຫ້ຄູນເລກກຳລັງນັ້ນ. ຄູນ -4 ກັບ -\frac{1}{2} ເພື່ອໃຫ້ໄດ້ 2.
\frac{1}{6}x^{2}
ຄຳນວນ 36 ກຳລັງ -\frac{1}{2} ແລະ ໄດ້ \frac{1}{6}.
-\frac{1}{2}\times \left(36x^{-4}\right)^{-\frac{1}{2}-1}\frac{\mathrm{d}}{\mathrm{d}x}(36x^{-4})
ຫາກ F ເປັນການປະກອບຂອງຟັງຊັນທີ່ຊອກຫາອະນຸພັນໄດ້ f\left(u\right) ແລະ u=g\left(x\right), ນັ້ນແມ່ນ ຫາກວ່າ F\left(x\right)=f\left(g\left(x\right)\right), ຈາກນັ້ນອະນຸພັນຂອງ F ແມ່ນອະນຸພັນຂອງ f ຂອງ u ຄູນອະນຸພັນຂອງ g ຂອງ x, ນັ້ນແມ່ນ \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\frac{1}{2}\times \left(36x^{-4}\right)^{-\frac{3}{2}}\left(-4\right)\times 36x^{-4-1}
ອະນຸພັນຂອງພະຫຸນາມໃດໜຶ່ງແມ່ນຜົນຮວມຂອງອະນຸພັນຂອງພົດມັນ. ອະນຸພັນຂອງພົດແນ່ນອນໃດກໍຕາມແມ່ນ 0. ອະນຸພັນຂອງ ax^{n} ແມ່ນ nax^{n-1}.
72x^{-5}\times \left(36x^{-4}\right)^{-\frac{3}{2}}
ເຮັດໃຫ້ງ່າຍ.