ປະເມີນ
8a
ຂະຫຍາຍ
8a
ແບ່ງປັນ
ສໍາເນົາຄລິບ
4a^{2}+4a+1-\left(2a-1\right)^{2}
ໃຊ້ທິດສະດີທະວິນາມ \left(p+q\right)^{2}=p^{2}+2pq+q^{2} ເພື່ອຂະຫຍາຍ \left(2a+1\right)^{2}.
4a^{2}+4a+1-\left(4a^{2}-4a+1\right)
ໃຊ້ທິດສະດີທະວິນາມ \left(p-q\right)^{2}=p^{2}-2pq+q^{2} ເພື່ອຂະຫຍາຍ \left(2a-1\right)^{2}.
4a^{2}+4a+1-4a^{2}+4a-1
ຊອກຫາຄຳກົງກັນຂ້າມຂອງ 4a^{2}-4a+1, ຊອກຫາຄຳກົງກັນຂ້າມຂອງແຕ່ລະຄຳ.
4a+1+4a-1
ຮວມ 4a^{2} ແລະ -4a^{2} ເພື່ອຮັບ 0.
8a+1-1
ຮວມ 4a ແລະ 4a ເພື່ອຮັບ 8a.
8a
ລົບ 1 ອອກຈາກ 1 ເພື່ອໃຫ້ໄດ້ 0.
4a^{2}+4a+1-\left(2a-1\right)^{2}
ໃຊ້ທິດສະດີທະວິນາມ \left(p+q\right)^{2}=p^{2}+2pq+q^{2} ເພື່ອຂະຫຍາຍ \left(2a+1\right)^{2}.
4a^{2}+4a+1-\left(4a^{2}-4a+1\right)
ໃຊ້ທິດສະດີທະວິນາມ \left(p-q\right)^{2}=p^{2}-2pq+q^{2} ເພື່ອຂະຫຍາຍ \left(2a-1\right)^{2}.
4a^{2}+4a+1-4a^{2}+4a-1
ຊອກຫາຄຳກົງກັນຂ້າມຂອງ 4a^{2}-4a+1, ຊອກຫາຄຳກົງກັນຂ້າມຂອງແຕ່ລະຄຳ.
4a+1+4a-1
ຮວມ 4a^{2} ແລະ -4a^{2} ເພື່ອຮັບ 0.
8a+1-1
ຮວມ 4a ແລະ 4a ເພື່ອຮັບ 8a.
8a
ລົບ 1 ອອກຈາກ 1 ເພື່ອໃຫ້ໄດ້ 0.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}