ປະເມີນ
-2\sqrt{22}\approx -9,38083152
ຂະຫຍາຍ
-2\sqrt{22}
ແບ່ງປັນ
ສໍາເນົາຄລິບ
\left(\sqrt{11}\right)^{2}-2\sqrt{11}\sqrt{2}+\left(\sqrt{2}\right)^{2}-13
ໃຊ້ທິດສະດີທະວິນາມ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ເພື່ອຂະຫຍາຍ \left(\sqrt{11}-\sqrt{2}\right)^{2}.
11-2\sqrt{11}\sqrt{2}+\left(\sqrt{2}\right)^{2}-13
ຮາກຂອງ \sqrt{11} ແມ່ນ 11.
11-2\sqrt{22}+\left(\sqrt{2}\right)^{2}-13
ເພື່ອຄູນ \sqrt{11} ແລະ \sqrt{2}, ໃຫ້ຄູນຈຳນວນພາຍໃຕ້ຮາກຂັ້ນສູງ.
11-2\sqrt{22}+2-13
ຮາກຂອງ \sqrt{2} ແມ່ນ 2.
13-2\sqrt{22}-13
ເພີ່ມ 11 ແລະ 2 ເພື່ອໃຫ້ໄດ້ 13.
-2\sqrt{22}
ລົບ 13 ອອກຈາກ 13 ເພື່ອໃຫ້ໄດ້ 0.
\left(\sqrt{11}\right)^{2}-2\sqrt{11}\sqrt{2}+\left(\sqrt{2}\right)^{2}-13
ໃຊ້ທິດສະດີທະວິນາມ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ເພື່ອຂະຫຍາຍ \left(\sqrt{11}-\sqrt{2}\right)^{2}.
11-2\sqrt{11}\sqrt{2}+\left(\sqrt{2}\right)^{2}-13
ຮາກຂອງ \sqrt{11} ແມ່ນ 11.
11-2\sqrt{22}+\left(\sqrt{2}\right)^{2}-13
ເພື່ອຄູນ \sqrt{11} ແລະ \sqrt{2}, ໃຫ້ຄູນຈຳນວນພາຍໃຕ້ຮາກຂັ້ນສູງ.
11-2\sqrt{22}+2-13
ຮາກຂອງ \sqrt{2} ແມ່ນ 2.
13-2\sqrt{22}-13
ເພີ່ມ 11 ແລະ 2 ເພື່ອໃຫ້ໄດ້ 13.
-2\sqrt{22}
ລົບ 13 ອອກຈາກ 13 ເພື່ອໃຫ້ໄດ້ 0.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}