ແກ້ສຳລັບ z
z=\sqrt[4]{3}e^{\frac{-\arctan(\sqrt{2})i+2\pi i}{2}}\approx -1,168770894+0,605000334i
z=\sqrt[4]{3}e^{-\frac{\arctan(\sqrt{2})i}{2}}\approx 1,168770894-0,605000334i
z=\sqrt[4]{3}e^{\frac{\arctan(\sqrt{2})i+2\pi i}{2}}\approx -1,168770894-0,605000334i
z=\sqrt[4]{3}e^{\frac{\arctan(\sqrt{2})i}{2}}\approx 1,168770894+0,605000334i
ແບ່ງປັນ
ສໍາເນົາຄລິບ
t^{2}-2t+3=0
ປ່ຽນແທນ t ສຳລັບ z^{2}.
t=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 1\times 3}}{2}
ສົມຜົນທັງໝົດຈາກແບບຟອມ ax^{2}+bx+c=0 ສາມາດແກ້ໄຂໄດ້ໂດຍໃຊ້ສູດຄຳນວນກຳລັງສອງ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ແທນ 1 ໃຫ້ a, -2 ໃຫ້ b ແລະ 3 ໃຫ້ c ໃນສູດຄຳນວນກຳລັງສອງ.
t=\frac{2±\sqrt{-8}}{2}
ເລີ່ມຄຳນວນ.
t=1+\sqrt{2}i t=-\sqrt{2}i+1
ແກ້ສົມຜົນ t=\frac{2±\sqrt{-8}}{2} ເມື່ອ ± ເປັນບວກ ແລະ ± ເປັນລົບ.
z=\sqrt[4]{3}e^{\frac{\arctan(\sqrt{2})i+2\pi i}{2}} z=\sqrt[4]{3}e^{\frac{\arctan(\sqrt{2})i}{2}} z=\sqrt[4]{3}e^{-\frac{\arctan(\sqrt{2})i}{2}} z=\sqrt[4]{3}e^{\frac{-\arctan(\sqrt{2})i+2\pi i}{2}}
ເນື່ອງຈາກ z=t^{2}, ຄຳຕອບຈຶ່ງຖືກນຳມາຈາກການປະເມີນ z=±\sqrt{t} ສຳລັບແຕ່ລະ t.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}