ແກ້ສຳລັບ x (complex solution)
x\in 2,-1+\sqrt{3}i,-\sqrt{3}i-1,\frac{-1+\sqrt{3}i}{2},1,\frac{-\sqrt{3}i-1}{2}
ແກ້ສຳລັບ x
x=1
x=2
Graph
ແບ່ງປັນ
ສໍາເນົາຄລິບ
t^{2}-9t+8=0
ປ່ຽນແທນ t ສຳລັບ x^{3}.
t=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 1\times 8}}{2}
ສົມຜົນທັງໝົດຈາກແບບຟອມ ax^{2}+bx+c=0 ສາມາດແກ້ໄຂໄດ້ໂດຍໃຊ້ສູດຄຳນວນກຳລັງສອງ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ແທນ 1 ໃຫ້ a, -9 ໃຫ້ b ແລະ 8 ໃຫ້ c ໃນສູດຄຳນວນກຳລັງສອງ.
t=\frac{9±7}{2}
ເລີ່ມຄຳນວນ.
t=8 t=1
ແກ້ສົມຜົນ t=\frac{9±7}{2} ເມື່ອ ± ເປັນບວກ ແລະ ± ເປັນລົບ.
x=-1+\sqrt{3}i x=-\sqrt{3}i-1 x=2 x=\frac{-1+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i-1}{2} x=1
ເນື່ອງຈາກ x=t^{3}, ຄຳຕອບແມ່ນໄດ້ມາຈາກການແກ້ໄຂສົມຜົນສຳລັບແຕ່ລະ t.
t^{2}-9t+8=0
ປ່ຽນແທນ t ສຳລັບ x^{3}.
t=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 1\times 8}}{2}
ສົມຜົນທັງໝົດຈາກແບບຟອມ ax^{2}+bx+c=0 ສາມາດແກ້ໄຂໄດ້ໂດຍໃຊ້ສູດຄຳນວນກຳລັງສອງ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ແທນ 1 ໃຫ້ a, -9 ໃຫ້ b ແລະ 8 ໃຫ້ c ໃນສູດຄຳນວນກຳລັງສອງ.
t=\frac{9±7}{2}
ເລີ່ມຄຳນວນ.
t=8 t=1
ແກ້ສົມຜົນ t=\frac{9±7}{2} ເມື່ອ ± ເປັນບວກ ແລະ ± ເປັນລົບ.
x=2 x=1
ເນື່ອງຈາກ x=t^{3}, ຄຳຕອບຈຶ່ງຖືກນຳມາຈາກການປະເມີນ x=\sqrt[3]{t} ສຳລັບແຕ່ລະ t.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}