ຕົວປະກອບ
\left(x-1\right)\left(x+1\right)\left(x^{2}-x+1\right)\left(x^{2}+x+1\right)
ປະເມີນ
\left(x^{2}-1\right)\left(\left(x^{2}+1\right)^{2}-x^{2}\right)
Graph
ແບ່ງປັນ
ສໍາເນົາຄລິບ
\left(x^{3}-1\right)\left(x^{3}+1\right)
ຂຽນ x^{6}-1 ຄືນໃໝ່ເປັນ \left(x^{3}\right)^{2}-1^{2}. ຄວາມແຕກຕ່າງຂອງສີ່ຫຼ່ຽມສາມາດແຍກໄດ້ໂດຍໃຊ້ກົດ: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x-1\right)\left(x^{2}+x+1\right)
ພິຈາລະນາ x^{3}-1. ຂຽນ x^{3}-1 ຄືນໃໝ່ເປັນ x^{3}-1^{3}. ຄວາມແຕກຕ່າງຂອງລູກບາກສາມາດແຍກໄດ້ໂດຍໃຊ້ກົດ: a^{3}-b^{3}=\left(a-b\right)\left(a^{2}+ab+b^{2}\right).
\left(x+1\right)\left(x^{2}-x+1\right)
ພິຈາລະນາ x^{3}+1. ຂຽນ x^{3}+1 ຄືນໃໝ່ເປັນ x^{3}+1^{3}. ຜົນບວກຂອງລູກບາກສາມາດແຍກໄດ້ໂດຍໃຊ້ກົດ: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(x-1\right)\left(x^{2}-x+1\right)\left(x+1\right)\left(x^{2}+x+1\right)
ຂຽນນິພົດແບບມີປັດໃຈສົມບູນ. ພະຫຸນາມຕໍ່ໄປນີ້ບໍ່ແມ່ນປັດໃຈເນື່ອງຈາກພວກມັນບໍ່ມີຮາກແບບມີເຫດຜົນ: x^{2}-x+1,x^{2}+x+1.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}