Skip ໄປຫາເນື້ອຫາຫຼັກ
ຕົວປະກອບ
Tick mark Image
ປະເມີນ
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

a+b=-2 ab=1\left(-3\right)=-3
ຕົວຫານນິພົດຕາມການຈັດກຸ່ມ. ທຳອິດນິພົດຕ້ອງຖືກຂຽນຄືນໃໝ່ເປັນ x^{2}+ax+bx-3. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
a=-3 b=1
ເນື່ອງຈາກ ab ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງມີສັນຍາລັກກົງກັນຂ້າມ. ເນື່ອງຈາກ a+b ເປັນຄ່າລົບ, ຈຳນວນລົບມີຄ່າສົມບູນສູງກວ່າຈຳນວນບວກ. ຄູ່ດັ່ງກ່າວເປັນທາງອອກລະບົບ.
\left(x^{2}-3x\right)+\left(x-3\right)
ຂຽນ x^{2}-2x-3 ຄືນໃໝ່ເປັນ \left(x^{2}-3x\right)+\left(x-3\right).
x\left(x-3\right)+x-3
ແຍກ x ອອກໃນ x^{2}-3x.
\left(x-3\right)\left(x+1\right)
ແຍກຄຳທົ່ວໄປ x-3 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
x^{2}-2x-3=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-3\right)}}{2}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-3\right)}}{2}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -2.
x=\frac{-\left(-2\right)±\sqrt{4+12}}{2}
ຄູນ -4 ໃຫ້ກັບ -3.
x=\frac{-\left(-2\right)±\sqrt{16}}{2}
ເພີ່ມ 4 ໃສ່ 12.
x=\frac{-\left(-2\right)±4}{2}
ເອົາຮາກຂັ້ນສອງຂອງ 16.
x=\frac{2±4}{2}
ຈຳນວນກົງກັນຂ້າມຂອງ -2 ແມ່ນ 2.
x=\frac{6}{2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{2±4}{2} ເມື່ອ ± ບວກ. ເພີ່ມ 2 ໃສ່ 4.
x=3
ຫານ 6 ດ້ວຍ 2.
x=-\frac{2}{2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{2±4}{2} ເມື່ອ ± ເປັນລົບ. ລົບ 4 ອອກຈາກ 2.
x=-1
ຫານ -2 ດ້ວຍ 2.
x^{2}-2x-3=\left(x-3\right)\left(x-\left(-1\right)\right)
ຫານສົມຜົນຕົ້ນສະບັບໂດຍໃຊ້ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). ແທນ 3 ເປັນ x_{1} ແລະ -1 ເປັນ x_{2}.
x^{2}-2x-3=\left(x-3\right)\left(x+1\right)
ເຮັດໃຫ້ນິພົດທັງໝົດຂອງຮູບແບບ p-\left(-q\right) ເປັນ p+q.