Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

x^{2}-\frac{3}{4}x-\frac{1}{2}=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-\left(-\frac{3}{4}\right)±\sqrt{\left(-\frac{3}{4}\right)^{2}-4\left(-\frac{1}{2}\right)}}{2}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 1 ສຳລັບ a, -\frac{3}{4} ສຳລັບ b ແລະ -\frac{1}{2} ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{3}{4}\right)±\sqrt{\frac{9}{16}-4\left(-\frac{1}{2}\right)}}{2}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ -\frac{3}{4} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x=\frac{-\left(-\frac{3}{4}\right)±\sqrt{\frac{9}{16}+2}}{2}
ຄູນ -4 ໃຫ້ກັບ -\frac{1}{2}.
x=\frac{-\left(-\frac{3}{4}\right)±\sqrt{\frac{41}{16}}}{2}
ເພີ່ມ \frac{9}{16} ໃສ່ 2.
x=\frac{-\left(-\frac{3}{4}\right)±\frac{\sqrt{41}}{4}}{2}
ເອົາຮາກຂັ້ນສອງຂອງ \frac{41}{16}.
x=\frac{\frac{3}{4}±\frac{\sqrt{41}}{4}}{2}
ຈຳນວນກົງກັນຂ້າມຂອງ -\frac{3}{4} ແມ່ນ \frac{3}{4}.
x=\frac{\sqrt{41}+3}{2\times 4}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{\frac{3}{4}±\frac{\sqrt{41}}{4}}{2} ເມື່ອ ± ບວກ. ເພີ່ມ \frac{3}{4} ໃສ່ \frac{\sqrt{41}}{4}.
x=\frac{\sqrt{41}+3}{8}
ຫານ \frac{3+\sqrt{41}}{4} ດ້ວຍ 2.
x=\frac{3-\sqrt{41}}{2\times 4}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{\frac{3}{4}±\frac{\sqrt{41}}{4}}{2} ເມື່ອ ± ເປັນລົບ. ລົບ \frac{\sqrt{41}}{4} ອອກຈາກ \frac{3}{4}.
x=\frac{3-\sqrt{41}}{8}
ຫານ \frac{3-\sqrt{41}}{4} ດ້ວຍ 2.
x=\frac{\sqrt{41}+3}{8} x=\frac{3-\sqrt{41}}{8}
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
x^{2}-\frac{3}{4}x-\frac{1}{2}=0
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
x^{2}-\frac{3}{4}x-\frac{1}{2}-\left(-\frac{1}{2}\right)=-\left(-\frac{1}{2}\right)
ເພີ່ມ \frac{1}{2} ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
x^{2}-\frac{3}{4}x=-\left(-\frac{1}{2}\right)
ການລົບ -\frac{1}{2} ອອກຈາກຕົວມັນເອງຈະເຫຼືອ 0.
x^{2}-\frac{3}{4}x=\frac{1}{2}
ລົບ -\frac{1}{2} ອອກຈາກ 0.
x^{2}-\frac{3}{4}x+\left(-\frac{3}{8}\right)^{2}=\frac{1}{2}+\left(-\frac{3}{8}\right)^{2}
ຫານ -\frac{3}{4}, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ -\frac{3}{8}. ຈາກນັ້ນເພີ່ມຮາກຂອງ -\frac{3}{8} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}-\frac{3}{4}x+\frac{9}{64}=\frac{1}{2}+\frac{9}{64}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ -\frac{3}{8} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}-\frac{3}{4}x+\frac{9}{64}=\frac{41}{64}
ເພີ່ມ \frac{1}{2} ໃສ່ \frac{9}{64} ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
\left(x-\frac{3}{8}\right)^{2}=\frac{41}{64}
ຕົວປະກອບ x^{2}-\frac{3}{4}x+\frac{9}{64}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x-\frac{3}{8}\right)^{2}}=\sqrt{\frac{41}{64}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x-\frac{3}{8}=\frac{\sqrt{41}}{8} x-\frac{3}{8}=-\frac{\sqrt{41}}{8}
ເຮັດໃຫ້ງ່າຍ.
x=\frac{\sqrt{41}+3}{8} x=\frac{3-\sqrt{41}}{8}
ເພີ່ມ \frac{3}{8} ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.