Skip ໄປຫາເນື້ອຫາຫຼັກ
ຕົວປະກອບ
Tick mark Image
ປະເມີນ
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

a+b=5 ab=1\left(-6\right)=-6
ຕົວຫານນິພົດຕາມການຈັດກຸ່ມ. ທຳອິດນິພົດຕ້ອງຖືກຂຽນຄືນໃໝ່ເປັນ x^{2}+ax+bx-6. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
-1,6 -2,3
ເນື່ອງຈາກ ab ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງມີສັນຍາລັກກົງກັນຂ້າມ. ເນື່ອງຈາກ a+b ເປັນຄ່າບວກ, ຈຳນວນບວກຈຶ່ງມີຄ່າສົມບູນສູງກວ່າຈຳນວນລົບ. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ -6.
-1+6=5 -2+3=1
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-1 b=6
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ 5.
\left(x^{2}-x\right)+\left(6x-6\right)
ຂຽນ x^{2}+5x-6 ຄືນໃໝ່ເປັນ \left(x^{2}-x\right)+\left(6x-6\right).
x\left(x-1\right)+6\left(x-1\right)
ຕົວຫານ x ໃນຕອນທຳອິດ ແລະ 6 ໃນກຸ່ມທີສອງ.
\left(x-1\right)\left(x+6\right)
ແຍກຄຳທົ່ວໄປ x-1 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
x^{2}+5x-6=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
x=\frac{-5±\sqrt{5^{2}-4\left(-6\right)}}{2}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-5±\sqrt{25-4\left(-6\right)}}{2}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 5.
x=\frac{-5±\sqrt{25+24}}{2}
ຄູນ -4 ໃຫ້ກັບ -6.
x=\frac{-5±\sqrt{49}}{2}
ເພີ່ມ 25 ໃສ່ 24.
x=\frac{-5±7}{2}
ເອົາຮາກຂັ້ນສອງຂອງ 49.
x=\frac{2}{2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-5±7}{2} ເມື່ອ ± ບວກ. ເພີ່ມ -5 ໃສ່ 7.
x=1
ຫານ 2 ດ້ວຍ 2.
x=-\frac{12}{2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-5±7}{2} ເມື່ອ ± ເປັນລົບ. ລົບ 7 ອອກຈາກ -5.
x=-6
ຫານ -12 ດ້ວຍ 2.
x^{2}+5x-6=\left(x-1\right)\left(x-\left(-6\right)\right)
ຫານສົມຜົນຕົ້ນສະບັບໂດຍໃຊ້ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). ແທນ 1 ເປັນ x_{1} ແລະ -6 ເປັນ x_{2}.
x^{2}+5x-6=\left(x-1\right)\left(x+6\right)
ເຮັດໃຫ້ນິພົດທັງໝົດຂອງຮູບແບບ p-\left(-q\right) ເປັນ p+q.