ແກ້ສຳລັບ x (complex solution)
x=\frac{-5+\sqrt{31}i}{2}\approx -2,5+2,783882181i
x=\frac{-\sqrt{31}i-5}{2}\approx -2,5-2,783882181i
Graph
ແບ່ງປັນ
ສໍາເນົາຄລິບ
x^{2}+5x=-14
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x^{2}+5x-\left(-14\right)=-14-\left(-14\right)
ເພີ່ມ 14 ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
x^{2}+5x-\left(-14\right)=0
ການລົບ -14 ອອກຈາກຕົວມັນເອງຈະເຫຼືອ 0.
x^{2}+5x+14=0
ລົບ -14 ອອກຈາກ 0.
x=\frac{-5±\sqrt{5^{2}-4\times 14}}{2}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 1 ສຳລັບ a, 5 ສຳລັບ b ແລະ 14 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 14}}{2}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 5.
x=\frac{-5±\sqrt{25-56}}{2}
ຄູນ -4 ໃຫ້ກັບ 14.
x=\frac{-5±\sqrt{-31}}{2}
ເພີ່ມ 25 ໃສ່ -56.
x=\frac{-5±\sqrt{31}i}{2}
ເອົາຮາກຂັ້ນສອງຂອງ -31.
x=\frac{-5+\sqrt{31}i}{2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-5±\sqrt{31}i}{2} ເມື່ອ ± ບວກ. ເພີ່ມ -5 ໃສ່ i\sqrt{31}.
x=\frac{-\sqrt{31}i-5}{2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-5±\sqrt{31}i}{2} ເມື່ອ ± ເປັນລົບ. ລົບ i\sqrt{31} ອອກຈາກ -5.
x=\frac{-5+\sqrt{31}i}{2} x=\frac{-\sqrt{31}i-5}{2}
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
x^{2}+5x=-14
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=-14+\left(\frac{5}{2}\right)^{2}
ຫານ 5, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ \frac{5}{2}. ຈາກນັ້ນເພີ່ມຮາກຂອງ \frac{5}{2} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}+5x+\frac{25}{4}=-14+\frac{25}{4}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ \frac{5}{2} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}+5x+\frac{25}{4}=-\frac{31}{4}
ເພີ່ມ -14 ໃສ່ \frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=-\frac{31}{4}
ຕົວປະກອບ x^{2}+5x+\frac{25}{4}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{-\frac{31}{4}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x+\frac{5}{2}=\frac{\sqrt{31}i}{2} x+\frac{5}{2}=-\frac{\sqrt{31}i}{2}
ເຮັດໃຫ້ງ່າຍ.
x=\frac{-5+\sqrt{31}i}{2} x=\frac{-\sqrt{31}i-5}{2}
ລົບ \frac{5}{2} ອອກຈາກສົມຜົນທັງສອງຂ້າງ.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}