Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

x^{2}+15x-2=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-15±\sqrt{15^{2}-4\left(-2\right)}}{2}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 1 ສຳລັບ a, 15 ສຳລັບ b ແລະ -2 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-15±\sqrt{225-4\left(-2\right)}}{2}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 15.
x=\frac{-15±\sqrt{225+8}}{2}
ຄູນ -4 ໃຫ້ກັບ -2.
x=\frac{-15±\sqrt{233}}{2}
ເພີ່ມ 225 ໃສ່ 8.
x=\frac{\sqrt{233}-15}{2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-15±\sqrt{233}}{2} ເມື່ອ ± ບວກ. ເພີ່ມ -15 ໃສ່ \sqrt{233}.
x=\frac{-\sqrt{233}-15}{2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-15±\sqrt{233}}{2} ເມື່ອ ± ເປັນລົບ. ລົບ \sqrt{233} ອອກຈາກ -15.
x=\frac{\sqrt{233}-15}{2} x=\frac{-\sqrt{233}-15}{2}
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
x^{2}+15x-2=0
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
x^{2}+15x-2-\left(-2\right)=-\left(-2\right)
ເພີ່ມ 2 ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
x^{2}+15x=-\left(-2\right)
ການລົບ -2 ອອກຈາກຕົວມັນເອງຈະເຫຼືອ 0.
x^{2}+15x=2
ລົບ -2 ອອກຈາກ 0.
x^{2}+15x+\left(\frac{15}{2}\right)^{2}=2+\left(\frac{15}{2}\right)^{2}
ຫານ 15, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ \frac{15}{2}. ຈາກນັ້ນເພີ່ມຮາກຂອງ \frac{15}{2} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}+15x+\frac{225}{4}=2+\frac{225}{4}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ \frac{15}{2} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}+15x+\frac{225}{4}=\frac{233}{4}
ເພີ່ມ 2 ໃສ່ \frac{225}{4}.
\left(x+\frac{15}{2}\right)^{2}=\frac{233}{4}
ຕົວປະກອບ x^{2}+15x+\frac{225}{4}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x+\frac{15}{2}\right)^{2}}=\sqrt{\frac{233}{4}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x+\frac{15}{2}=\frac{\sqrt{233}}{2} x+\frac{15}{2}=-\frac{\sqrt{233}}{2}
ເຮັດໃຫ້ງ່າຍ.
x=\frac{\sqrt{233}-15}{2} x=\frac{-\sqrt{233}-15}{2}
ລົບ \frac{15}{2} ອອກຈາກສົມຜົນທັງສອງຂ້າງ.