Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

x^{2}-2x+1+4x=0
ໃຊ້ທິດສະດີທະວິນາມ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ເພື່ອຂະຫຍາຍ \left(x-1\right)^{2}.
x^{2}+2x+1=0
ຮວມ -2x ແລະ 4x ເພື່ອຮັບ 2x.
a+b=2 ab=1
ເພື່ອແກ້ສົມຜົນ, ໃຫ້ຫານ x^{2}+2x+1 ໂດຍໃຊ້ສູດຄຳນວນ x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
a=1 b=1
ເນື່ອງຈາກ ab ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງມີສັນຍາລັກດຽວກັນ. ເນື່ອງຈາກ a+b ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງເປັນຄ່າບວກທັງຄູ່. ຄູ່ດັ່ງກ່າວເປັນທາງອອກລະບົບ.
\left(x+1\right)\left(x+1\right)
ຂຽນນິພົດແບບມີປັດໃຈ \left(x+a\right)\left(x+b\right) ໂດຍໃຊ້ຮາກທີ່ໄດ້ຮັບມາ.
\left(x+1\right)^{2}
ຂຽນຄືນໃໝ່ເປັນຮາກທະວິນາມ.
x=-1
ເພື່ອຊອກຫາສົມຜົນ, ໃຫ້ແກ້ໄຂ x+1=0.
x^{2}-2x+1+4x=0
ໃຊ້ທິດສະດີທະວິນາມ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ເພື່ອຂະຫຍາຍ \left(x-1\right)^{2}.
x^{2}+2x+1=0
ຮວມ -2x ແລະ 4x ເພື່ອຮັບ 2x.
a+b=2 ab=1\times 1=1
ເພື່ອແກ້ສົມຜົນ, ໃຫ້ຫານທາງຊ້າຍໂດຍການຈັດກຸ່ມ, ທຳອິດ, ທາງຊ້າຍຈະຕ້ອງຂຽນໃໝ່ເປັນ x^{2}+ax+bx+1. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
a=1 b=1
ເນື່ອງຈາກ ab ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງມີສັນຍາລັກດຽວກັນ. ເນື່ອງຈາກ a+b ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງເປັນຄ່າບວກທັງຄູ່. ຄູ່ດັ່ງກ່າວເປັນທາງອອກລະບົບ.
\left(x^{2}+x\right)+\left(x+1\right)
ຂຽນ x^{2}+2x+1 ຄືນໃໝ່ເປັນ \left(x^{2}+x\right)+\left(x+1\right).
x\left(x+1\right)+x+1
ແຍກ x ອອກໃນ x^{2}+x.
\left(x+1\right)\left(x+1\right)
ແຍກຄຳທົ່ວໄປ x+1 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
\left(x+1\right)^{2}
ຂຽນຄືນໃໝ່ເປັນຮາກທະວິນາມ.
x=-1
ເພື່ອຊອກຫາສົມຜົນ, ໃຫ້ແກ້ໄຂ x+1=0.
x^{2}-2x+1+4x=0
ໃຊ້ທິດສະດີທະວິນາມ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ເພື່ອຂະຫຍາຍ \left(x-1\right)^{2}.
x^{2}+2x+1=0
ຮວມ -2x ແລະ 4x ເພື່ອຮັບ 2x.
x=\frac{-2±\sqrt{2^{2}-4}}{2}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 1 ສຳລັບ a, 2 ສຳລັບ b ແລະ 1 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4}}{2}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 2.
x=\frac{-2±\sqrt{0}}{2}
ເພີ່ມ 4 ໃສ່ -4.
x=-\frac{2}{2}
ເອົາຮາກຂັ້ນສອງຂອງ 0.
x=-1
ຫານ -2 ດ້ວຍ 2.
x^{2}-2x+1+4x=0
ໃຊ້ທິດສະດີທະວິນາມ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ເພື່ອຂະຫຍາຍ \left(x-1\right)^{2}.
x^{2}+2x+1=0
ຮວມ -2x ແລະ 4x ເພື່ອຮັບ 2x.
\left(x+1\right)^{2}=0
ຕົວປະກອບ x^{2}+2x+1. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x+1\right)^{2}}=\sqrt{0}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x+1=0 x+1=0
ເຮັດໃຫ້ງ່າຍ.
x=-1 x=-1
ລົບ 1 ອອກຈາກສົມຜົນທັງສອງຂ້າງ.
x=-1
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ. ວິທີແກ້ແມ່ນຄືກັນ.