Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ y
Tick mark Image
ແກ້ສຳລັບ x
Tick mark Image

ແບ່ງປັນ

\left(\sqrt{\frac{\frac{\frac{\frac{yx}{545}}{2x}}{455}}{5555\left(z^{2}\right)^{\frac{x}{z\sqrt{51}}}z}}\right)^{2}=50000
ສະແດງ \frac{\frac{\frac{\frac{\frac{yx}{545}}{2x}}{455}}{5555\left(z^{2}\right)^{\frac{x}{z\sqrt{51}}}}}{z} ເປັນໜຶ່ງເສດສ່ວນ.
\left(\sqrt{\frac{\frac{\frac{yx}{545\times 2x}}{455}}{5555\left(z^{2}\right)^{\frac{x}{z\sqrt{51}}}z}}\right)^{2}=50000
ສະແດງ \frac{\frac{yx}{545}}{2x} ເປັນໜຶ່ງເສດສ່ວນ.
\left(\sqrt{\frac{\frac{\frac{y}{2\times 545}}{455}}{5555\left(z^{2}\right)^{\frac{x}{z\sqrt{51}}}z}}\right)^{2}=50000
ຍົກເລີກ x ທັງໃນຕົວເສດ ແລະ ຕົວຫານ.
\left(\sqrt{\frac{\frac{\frac{y}{1090}}{455}}{5555\left(z^{2}\right)^{\frac{x}{z\sqrt{51}}}z}}\right)^{2}=50000
ຄູນ 2 ກັບ 545 ເພື່ອໃຫ້ໄດ້ 1090.
\left(\sqrt{\frac{\frac{\frac{y}{1090}}{455}}{5555\left(z^{2}\right)^{\frac{x\sqrt{51}}{z\left(\sqrt{51}\right)^{2}}}z}}\right)^{2}=50000
ໃຊ້ເຫດຜົນຕັດສິນຕົວຫານຂອງ \frac{x}{z\sqrt{51}} ໂດຍການຫານຕົວເສດ ແລະ ຕົວຫານໂດຍ \sqrt{51}.
\left(\sqrt{\frac{\frac{\frac{y}{1090}}{455}}{5555\left(z^{2}\right)^{\frac{x\sqrt{51}}{z\times 51}}z}}\right)^{2}=50000
ຮາກຂອງ \sqrt{51} ແມ່ນ 51.
\left(\sqrt{\frac{\frac{\frac{y}{1090}}{455}}{5555\left(z^{2}\right)^{\frac{\sqrt{51}x}{51z}}z}}\right)^{2}=50000
ປັດໃຈທີ່ນິພົດບໍ່ມີຢູ່ໃນ \frac{x\sqrt{51}}{z\times 51}.
\left(\sqrt{\frac{\frac{\frac{y}{1090}}{455}}{5555\left(z^{2}\right)^{\frac{x}{\sqrt{51}z}}z}}\right)^{2}=50000
ຍົກເລີກ \sqrt{51} ທັງໃນຕົວເສດ ແລະ ຕົວຫານ.
\frac{\frac{\frac{y}{1090}}{455}}{5555\left(z^{2}\right)^{\frac{x}{\sqrt{51}z}}z}=50000
ຄຳນວນ \sqrt{\frac{\frac{\frac{y}{1090}}{455}}{5555\left(z^{2}\right)^{\frac{x}{\sqrt{51}z}}z}} ກຳລັງ 2 ແລະ ໄດ້ \frac{\frac{\frac{y}{1090}}{455}}{5555\left(z^{2}\right)^{\frac{x}{\sqrt{51}z}}z}.
\frac{\frac{y}{1090}}{455\times 5555\left(z^{2}\right)^{\frac{x}{\sqrt{51}z}}z}=50000
ສະແດງ \frac{\frac{\frac{y}{1090}}{455}}{5555\left(z^{2}\right)^{\frac{x}{\sqrt{51}z}}z} ເປັນໜຶ່ງເສດສ່ວນ.
\frac{\frac{y}{1090}}{2527525\left(z^{2}\right)^{\frac{x}{\sqrt{51}z}}z}=50000
ຄູນ 455 ກັບ 5555 ເພື່ອໃຫ້ໄດ້ 2527525.
\frac{y}{1090\times 2527525\left(z^{2}\right)^{\frac{x}{\sqrt{51}z}}z}=50000
ສະແດງ \frac{\frac{y}{1090}}{2527525\left(z^{2}\right)^{\frac{x}{\sqrt{51}z}}z} ເປັນໜຶ່ງເສດສ່ວນ.
\frac{y}{2755002250\left(z^{2}\right)^{\frac{x}{\sqrt{51}z}}z}=50000
ຄູນ 1090 ກັບ 2527525 ເພື່ອໃຫ້ໄດ້ 2755002250.
\frac{\left(z^{2}\right)^{-\frac{x}{\sqrt{51}z}}}{2755002250z}y=50000
ສົມຜົນຢູ່ໃນຮູບແບບມາດຕະຖານ.
\frac{\frac{\left(z^{2}\right)^{-\frac{x}{\sqrt{51}z}}}{2755002250z}y\times 2755002250z}{\left(z^{2}\right)^{-\frac{x}{\sqrt{51}z}}}=\frac{50000\times 2755002250z}{\left(z^{2}\right)^{-\frac{x}{\sqrt{51}z}}}
ຫານທັງສອງຂ້າງດ້ວຍ \frac{1}{2755002250}\left(z^{2}\right)^{-x\left(\sqrt{51}\right)^{-1}z^{-1}}z^{-1}.
y=\frac{50000\times 2755002250z}{\left(z^{2}\right)^{-\frac{x}{\sqrt{51}z}}}
ການຫານດ້ວຍ \frac{1}{2755002250}\left(z^{2}\right)^{-x\left(\sqrt{51}\right)^{-1}z^{-1}}z^{-1} ຈະຍົກເລີກການຄູນດ້ວຍ \frac{1}{2755002250}\left(z^{2}\right)^{-x\left(\sqrt{51}\right)^{-1}z^{-1}}z^{-1}.
y=137750112500000z\left(z^{2}\right)^{\frac{\sqrt{51}x}{51z}}
ຫານ 50000 ດ້ວຍ \frac{1}{2755002250}\left(z^{2}\right)^{-x\left(\sqrt{51}\right)^{-1}z^{-1}}z^{-1}.