ແກ້ສຳລັບ x
x=\left(\sqrt{y}+2\right)^{2}
y\geq 0
ແກ້ສຳລັບ y
y=\left(\sqrt{x}-2\right)^{2}
x\geq 0\text{ and }\sqrt{x}-2\geq 0
ແກ້ສຳລັບ x (complex solution)
x=\left(\sqrt{y}+2\right)^{2}
arg(\sqrt{y}+2)<\pi
ແກ້ສຳລັບ y (complex solution)
y=\left(\sqrt{x}-2\right)^{2}
x=4\text{ or }arg(\sqrt{x}-2)<\pi
Graph
ແບ່ງປັນ
ສໍາເນົາຄລິບ
\sqrt{x}-\sqrt{y}-\left(-\sqrt{y}\right)=2-\left(-\sqrt{y}\right)
ລົບ -\sqrt{y} ອອກຈາກສົມຜົນທັງສອງຂ້າງ.
\sqrt{x}=2-\left(-\sqrt{y}\right)
ການລົບ -\sqrt{y} ອອກຈາກຕົວມັນເອງຈະເຫຼືອ 0.
\sqrt{x}=\sqrt{y}+2
ລົບ -\sqrt{y} ອອກຈາກ 2.
x=\left(\sqrt{y}+2\right)^{2}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍຂອງສົມຜົນທັງສອງຂ້າງ.
-\sqrt{y}+\sqrt{x}-\sqrt{x}=2-\sqrt{x}
ລົບ \sqrt{x} ອອກຈາກສົມຜົນທັງສອງຂ້າງ.
-\sqrt{y}=2-\sqrt{x}
ການລົບ \sqrt{x} ອອກຈາກຕົວມັນເອງຈະເຫຼືອ 0.
-\sqrt{y}=-\sqrt{x}+2
ລົບ \sqrt{x} ອອກຈາກ 2.
\frac{-\sqrt{y}}{-1}=\frac{-\sqrt{x}+2}{-1}
ຫານທັງສອງຂ້າງດ້ວຍ -1.
\sqrt{y}=\frac{-\sqrt{x}+2}{-1}
ການຫານດ້ວຍ -1 ຈະຍົກເລີກການຄູນດ້ວຍ -1.
\sqrt{y}=\sqrt{x}-2
ຫານ 2-\sqrt{x} ດ້ວຍ -1.
y=\left(\sqrt{x}-2\right)^{2}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍຂອງສົມຜົນທັງສອງຂ້າງ.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}