Skip ໄປຫາເນື້ອຫາຫຼັກ
ປະເມີນ
Tick mark Image

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

\int x-4x\mathrm{d}x
ປະເມີນປະລິພັນຈຳກັດເຂດເສຍກ່ອນ.
\int x\mathrm{d}x+\int -4x\mathrm{d}x
ປະສົມປະສານການລວມພົດໂດຍພົດ.
\int x\mathrm{d}x-4\int x\mathrm{d}x
ແຍກຕົວປະກອບຄົງທີ່ອອກໃນແຕ່ລະພົດ.
\frac{x^{2}}{2}-4\int x\mathrm{d}x
ຕັ້ງແຕ່ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} ສຳລັບ k\neq -1, ປ່ຽນ \int x\mathrm{d}x ກັບ \frac{x^{2}}{2}.
\frac{x^{2}}{2}-2x^{2}
ຕັ້ງແຕ່ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} ສຳລັບ k\neq -1, ປ່ຽນ \int x\mathrm{d}x ກັບ \frac{x^{2}}{2}. ຄູນ -4 ໃຫ້ກັບ \frac{x^{2}}{2}.
-\frac{3x^{2}}{2}
ເຮັດໃຫ້ງ່າຍ.
-\frac{3}{2}\times 6^{2}+\frac{3}{2}\times 3^{2}
ປະລິພັນທີ່ແນ່ນອນຂອງພະຫຸນາມແມ່ນປະຕິຍານຸພັນຂອງພະຫຸນາມທີ່ປະເມີນແລ້ວໃນລະດັບສູງກວ່າຂອງການຮວມລົບໃຫ້ປະຕິຍານຸພັນທີ່ປະເມີນແລ້ວໃນລະດັບຂໍ້ຈຳກັດທີ່ຕ່ຳກວ່າຂອງການລວມກັນ.
-\frac{81}{2}
ເຮັດໃຫ້ງ່າຍ.