Skip ໄປຫາເນື້ອຫາຫຼັກ
ປະເມີນ
Tick mark Image

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

\int _{0}^{2}x^{2}+4\mathrm{d}x
ຄຳນວນ -x ກຳລັງ 2 ແລະ ໄດ້ x^{2}.
\int x^{2}+4\mathrm{d}x
ປະເມີນປະລິພັນຈຳກັດເຂດເສຍກ່ອນ.
\int x^{2}\mathrm{d}x+\int 4\mathrm{d}x
ປະສົມປະສານການລວມພົດໂດຍພົດ.
\frac{x^{3}}{3}+\int 4\mathrm{d}x
ຕັ້ງແຕ່ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} ສຳລັບ k\neq -1, ປ່ຽນ \int x^{2}\mathrm{d}x ກັບ \frac{x^{3}}{3}.
\frac{x^{3}}{3}+4x
ຊອກຫາສ່ວນປະກອບຂອງ 4 ໂດຍການນຳໃຊ້ຕາຕະລາງຂອງກົດລະບຽບການເຊື່ອມໂຍງທົ່ວໄປ \int a\mathrm{d}x=ax.
\frac{2^{3}}{3}+4\times 2-\left(\frac{0^{3}}{3}+4\times 0\right)
ປະລິພັນທີ່ແນ່ນອນຂອງພະຫຸນາມແມ່ນປະຕິຍານຸພັນຂອງພະຫຸນາມທີ່ປະເມີນແລ້ວໃນລະດັບສູງກວ່າຂອງການຮວມລົບໃຫ້ປະຕິຍານຸພັນທີ່ປະເມີນແລ້ວໃນລະດັບຂໍ້ຈຳກັດທີ່ຕ່ຳກວ່າຂອງການລວມກັນ.
\frac{32}{3}
ເຮັດໃຫ້ງ່າຍ.